EnsemConvNet: a deep learning approach for human activity recognition using smartphone sensors for healthcare applications

被引:0
|
作者
Debadyuti Mukherjee
Riktim Mondal
Pawan Kumar Singh
Ram Sarkar
Debotosh Bhattacharjee
机构
[1] Jadavpur University,Department of Computer Science and Engineering
[2] Jadavpur University,Department of Information Technology
来源
关键词
Human activity recognition; EnsemConvNet; Classifier ensemble; Time-series data; Sensor data;
D O I
暂无
中图分类号
学科分类号
摘要
Human Activity Recognition (HAR) can be defined as the automatic prediction of the regular human activities performed in our day-to-day life, such as walking, running, cooking, performing office work, etc. It is truly beneficial in the field of medical care services, for example, personal health care assistants, old-age care services, maintaining patient records for future help, etc. Input data to a HAR system can be (a) videos or still images capturing human activities, or (b) time-series data of human body movements while performing the activities taken from sensors in the smart devices like accelerometer, gyroscope, etc. In this work, we mainly focus on the second category of the input data. Here, we propose an ensemble of three classification models, namely CNN-Net, Encoded-Net, and CNN-LSTM, which is named as EnsemConvNet. Each of these classification models is built upon simple 1D Convolutional Neural Network (CNN) but differs in terms of the number of dense layers, kernel size used along with other key differences in the architecture. Each model accepts the time series data as a 2D matrix by taking a window of data at a time in order to infer information, which ultimately predicts the type of human activity. Classification outcome of the EnsemConvNet model is decided using various classifier combination methods that include majority voting, sum rule, product rule, and a score fusion approach called adaptive weighted approach. Three benchmark datasets, namely WISDM activity prediction, UniMiB SHAR, MobiAct, are used for evaluating our proposed model. We have compared our EnsemConvNet model with some existing deep learning models such as Multi Headed CNN, hybrid of CNN, and Long Short Term Memory (LSTM) models. The results obtained here establish the supremacy of the EnsemConvNet model over the other mentioned models.
引用
收藏
页码:31663 / 31690
页数:27
相关论文
共 50 条
  • [31] The use of deep learning for smartphone-based human activity recognition
    Stampfler, Tristan
    Elgendi, Mohamed
    Fletcher, Richard Ribon
    Menon, Carlo
    FRONTIERS IN PUBLIC HEALTH, 2023, 11
  • [32] Human Activity Recognition for Indoor Localization Using Smartphone Inertial Sensors
    Moreira, Dinis
    Barandas, Marilia
    Rocha, Tiago
    Alves, Pedro
    Santos, Ricardo
    Leonardo, Ricardo
    Vieira, Pedro
    Gamboa, Hugo
    SENSORS, 2021, 21 (18)
  • [33] Human Activity Recognition for the Identification of Bullying and Cyberbullying Using Smartphone Sensors
    Gattulli, Vincenzo
    Impedovo, Donato
    Pirlo, Giuseppe
    Sarcinella, Lucia
    ELECTRONICS, 2023, 12 (02)
  • [34] A Novel Ensemble ELM for Human Activity Recognition Using Smartphone Sensors
    Chen, Zhenghua
    Jiang, Chaoyang
    Xie, Lihua
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2019, 15 (05) : 2691 - 2699
  • [35] A Comparative Study on Human Activity Recognition Using Inertial Sensors in a Smartphone
    Wang, Aiguo
    Chen, Guilin
    Yang, Jing
    Zhao, Shenghui
    Chang, Chih-Yung
    IEEE SENSORS JOURNAL, 2016, 16 (11) : 4566 - 4578
  • [36] Effect of Dynamic Feature for Human Activity Recognition using Smartphone Sensors
    Nakano, Kotaro
    Chakraborty, Basabi
    2017 IEEE 8TH INTERNATIONAL CONFERENCE ON AWARENESS SCIENCE AND TECHNOLOGY (ICAST), 2017, : 539 - 543
  • [37] Smartphone based human activity recognition irrespective of usage behavior using deep learning technique
    Soumya Kundu
    Manjarini Mallik
    Jayita Saha
    Chandreyee Chowdhury
    International Journal of Information Technology, 2025, 17 (1) : 69 - 85
  • [38] Analysis of Deep Transfer Learning Using DeepConvLSTM for Human Activity Recognition fromWearable Sensors
    Kalabakov, Stefan
    Gjoreski, Martin
    Gjoreski, Hristijan
    Gams, Matjaz
    INFORMATICA-AN INTERNATIONAL JOURNAL OF COMPUTING AND INFORMATICS, 2021, 45 (02): : 289 - 296
  • [39] Human Activity Recognition using Deep Learning
    Moola, Ramu
    Hossain, Ashraf
    2022 URSI REGIONAL CONFERENCE ON RADIO SCIENCE, USRI-RCRS, 2022, : 165 - 168
  • [40] A Robust Deep Learning Approach for Position-Independent Smartphone-Based Human Activity Recognition
    Almaslukh, Bandar
    Artoli, Abdel Monim
    Al-Muhtadi, Jalal
    SENSORS, 2018, 18 (11)