Canonical energy is quantum Fisher information

被引:0
|
作者
Nima Lashkari
Mark Van Raamsdonk
机构
[1] Massachusetts Institute of Technology,Center for Theoretical Physics
[2] University of British Columbia,Department of Physics and Astronomy
关键词
AdS-CFT Correspondence; Gauge-gravity correspondence;
D O I
暂无
中图分类号
学科分类号
摘要
In quantum information theory, Fisher Information is a natural metric on the space of perturbations to a density matrix, defined by calculating the relative entropy with the unperturbed state at quadratic order in perturbations. In gravitational physics, Canonical Energy defines a natural metric on the space of perturbations to spacetimes with a Killing horizon. In this paper, we show that the Fisher information metric for perturbations to the vacuum density matrix of a ball-shaped region B in a holographic CFT is dual to the canonical energy metric for perturbations to a corresponding Rindler wedge RB of Anti-de-Sitter space. Positivity of relative entropy at second order implies that the Fisher information metric is positive definite. Thus, for physical perturbations to anti-de-Sitter spacetime, the canonical energy associated to any Rindler wedge must be positive. This second-order constraint on the metric extends the first order result from relative entropy positivity that physical perturbations must satisfy the linearized Einstein’s equations.
引用
收藏
相关论文
共 50 条
  • [21] Quantum properties of classical Fisher information
    Hall, MJW
    PHYSICAL REVIEW A, 2000, 62 (01): : 6
  • [22] Fisher information, nonclassicality and quantum revivals
    Romera, Elvira
    de los Santos, Francisco
    PHYSICS LETTERS A, 2013, 377 (37) : 2284 - 2287
  • [23] Maximal quantum Fisher information matrix
    Chen, Yu
    Yuan, Haidong
    NEW JOURNAL OF PHYSICS, 2017, 19
  • [24] Fisher information: Quantum uncertainty relation
    Chakrabarty, I
    ACTA PHYSICA SLOVACA, 2004, 54 (06) : 487 - 492
  • [25] Quantum Fisher information of triphoton states
    李韬
    李名扬
    黄俊铭
    ChineseOpticsLetters, 2016, 14 (03) : 88 - 92
  • [26] Comment on 'On the realisation of quantum Fisher information'
    Olendski, O.
    EUROPEAN JOURNAL OF PHYSICS, 2017, 38 (03)
  • [27] Quantum criticality from Fisher information
    Hongting Song
    Shunlong Luo
    Shuangshuang Fu
    Quantum Information Processing, 2017, 16
  • [28] Quantum Fisher information in noninertial frames
    Yao, Yao
    Xiao, Xing
    Ge, Li
    Wang, Xiao-guang
    Sun, Chang-pu
    PHYSICAL REVIEW A, 2014, 89 (04):
  • [29] Generalized measure of quantum Fisher information
    Sone, Akira
    Cerezo, M.
    Beckey, Jacob L.
    Coles, Patrick J.
    PHYSICAL REVIEW A, 2021, 104 (06)
  • [30] Quantum Fisher information and uncertainty relations
    Luo, SL
    LETTERS IN MATHEMATICAL PHYSICS, 2000, 53 (03) : 243 - 251