Canonical energy is quantum Fisher information

被引:0
|
作者
Nima Lashkari
Mark Van Raamsdonk
机构
[1] Massachusetts Institute of Technology,Center for Theoretical Physics
[2] University of British Columbia,Department of Physics and Astronomy
关键词
AdS-CFT Correspondence; Gauge-gravity correspondence;
D O I
暂无
中图分类号
学科分类号
摘要
In quantum information theory, Fisher Information is a natural metric on the space of perturbations to a density matrix, defined by calculating the relative entropy with the unperturbed state at quadratic order in perturbations. In gravitational physics, Canonical Energy defines a natural metric on the space of perturbations to spacetimes with a Killing horizon. In this paper, we show that the Fisher information metric for perturbations to the vacuum density matrix of a ball-shaped region B in a holographic CFT is dual to the canonical energy metric for perturbations to a corresponding Rindler wedge RB of Anti-de-Sitter space. Positivity of relative entropy at second order implies that the Fisher information metric is positive definite. Thus, for physical perturbations to anti-de-Sitter spacetime, the canonical energy associated to any Rindler wedge must be positive. This second-order constraint on the metric extends the first order result from relative entropy positivity that physical perturbations must satisfy the linearized Einstein’s equations.
引用
收藏
相关论文
共 50 条
  • [1] Canonical energy is quantum Fisher information
    Lashkari, Nima
    Van Raamsdonk, Mark
    JOURNAL OF HIGH ENERGY PHYSICS, 2016, (04):
  • [2] Fisher information, canonical ensemble, and Hamiltonian systems
    Pennini, F
    Plastino, A
    PHYSICS LETTERS A, 2006, 349 (1-4) : 15 - 20
  • [3] ON COVARIANCE AND QUANTUM FISHER INFORMATION
    Luo, S.
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 2009, 53 (02) : 329 - U151
  • [4] Continuity of the quantum Fisher information
    Rezakhani, A. T.
    Hassani, M.
    Alipour, S.
    PHYSICAL REVIEW A, 2019, 100 (03)
  • [5] Quantum Fisher information with coherence
    Hradil, Zdenek
    Rehacek, Jaroslav
    Sanchez-Soto, Luis
    Englert, Berthold-Georg
    OPTICA, 2019, 6 (11): : 1437 - 1440
  • [6] Quantum interference and Fisher information
    Hradil, Z
    Rehácek, J
    PHYSICS LETTERS A, 2005, 334 (04) : 267 - 272
  • [7] On the realization of quantum Fisher information
    Saha, Aparna
    Talukdar, B.
    Chatterjee, Supriya
    EUROPEAN JOURNAL OF PHYSICS, 2017, 38 (02)
  • [8] INTRODUCTION TO QUANTUM FISHER INFORMATION
    Petz, D.
    Ghinea, C.
    QUANTUM PROBABILITY AND RELATED TOPICS, 2011, 27 : 261 - 281
  • [9] Fisher information in quantum statistics
    Barndorff-Nielsen, OE
    Gill, RD
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (24): : 4481 - 4490
  • [10] Inequalities for quantum Fisher information
    Gibilisco, Paolo
    Imparato, Daniele
    Isola, Tommaso
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 137 (01) : 317 - 327