An Optimal XP Algorithm for Hamiltonian Cycle on Graphs of Bounded Clique-Width

被引:0
|
作者
Benjamin Bergougnoux
Mamadou Moustapha Kanté
O-joung Kwon
机构
[1] University of Bergen,LIMOS, CNRS
[2] Université Clermont Auvergne,Department of Mathematics
[3] Incheon National University,Discrete Mathematics Group
[4] Institute for Basic Science (IBS),undefined
来源
Algorithmica | 2020年 / 82卷
关键词
Hamiltonian cycle; Eulerian trail; Clique-width; XP algorithm;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we prove that, given a clique-width k-expression of an n-vertex graph, Hamiltonian Cycle can be solved in time nO(k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n^{\mathcal {O}(k)}$$\end{document}. This improves the naive algorithm that runs in time nO(k2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n^{\mathcal {O}(k^2)}$$\end{document} by Espelage et al. (Graph-theoretic concepts in computer science, vol 2204. Springer, Berlin, 2001), and it also matches with the lower bound result by Fomin et al. that, unless the Exponential Time Hypothesis fails, there is no algorithm running in time no(k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n^{o(k)}$$\end{document} (Fomin et al. in SIAM J Comput 43:1541–1563, 2014). We present a technique of representative sets using two-edge colored multigraphs on k vertices. The essential idea is that, for a two-edge colored multigraph, the existence of an Eulerian trail that uses edges with different colors alternately can be determined by two information: the number of colored edges incident with each vertex, and the connectedness of the multigraph. With this idea, we avoid the bottleneck of the naive algorithm, which stores all the possible multigraphs on k vertices with at most n edges.
引用
收藏
页码:1654 / 1674
页数:20
相关论文
共 50 条
  • [31] Solutions for the knapsack problem with conflict and forcing graphs of bounded clique-width
    Gurski, Frank
    Rehs, Carolin
    MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2019, 89 (03) : 411 - 432
  • [32] Vertex disjoint paths on clique-width bounded graphs - Extended abstract
    Gurski, F
    Wanke, E
    LATIN 2004: THEORETICAL INFORMATICS, 2004, 2976 : 119 - 128
  • [33] Solutions for the knapsack problem with conflict and forcing graphs of bounded clique-width
    Frank Gurski
    Carolin Rehs
    Mathematical Methods of Operations Research, 2019, 89 : 411 - 432
  • [34] Linear time solvable optimization problems on graphs of bounded clique-width
    Courcelle, B
    Makowsky, JA
    Rotics, U
    THEORY OF COMPUTING SYSTEMS, 2000, 33 (02) : 125 - 150
  • [35] Bipartite Graphs of Large Clique-Width
    Korpelainen, Nicholas
    Lozin, Vadim V.
    COMBINATORIAL ALGORITHMS, 2009, 5874 : 385 - +
  • [36] Maximum Matching in Almost Linear Time on Graphs of Bounded Clique-Width
    Guillaume Ducoffe
    Algorithmica, 2022, 84 : 3489 - 3520
  • [37] Maximum Matching in Almost Linear Time on Graphs of Bounded Clique-Width
    Ducoffe, Guillaume
    ALGORITHMICA, 2022, 84 (11) : 3489 - 3520
  • [38] On the clique-width of graphs in hereditary classes
    Boliac, R
    Lozin, V
    ALGORITHMS AND COMPUTATION, PROCEEDINGS, 2002, 2518 : 44 - 54
  • [39] Clique-width III: Hamiltonian Cycle and the Odd Case of Graph Coloring
    Fomin, Fedor, V
    Golovach, Petr A.
    Lokshtanov, Daniel
    Saurabh, Saket
    Zehavi, Meirav
    ACM TRANSACTIONS ON ALGORITHMS, 2019, 15 (01)
  • [40] Graphs of linear clique-width at most
    Heggernes, Pinar
    Meister, Daniel
    Papadopoulos, Charis
    THEORY AND APPLICATIONS OF MODELS OF COMPUTATION, PROCEEDINGS, 2008, 4978 : 330 - 341