An Optimal XP Algorithm for Hamiltonian Cycle on Graphs of Bounded Clique-Width

被引:0
|
作者
Benjamin Bergougnoux
Mamadou Moustapha Kanté
O-joung Kwon
机构
[1] University of Bergen,LIMOS, CNRS
[2] Université Clermont Auvergne,Department of Mathematics
[3] Incheon National University,Discrete Mathematics Group
[4] Institute for Basic Science (IBS),undefined
来源
Algorithmica | 2020年 / 82卷
关键词
Hamiltonian cycle; Eulerian trail; Clique-width; XP algorithm;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we prove that, given a clique-width k-expression of an n-vertex graph, Hamiltonian Cycle can be solved in time nO(k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n^{\mathcal {O}(k)}$$\end{document}. This improves the naive algorithm that runs in time nO(k2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n^{\mathcal {O}(k^2)}$$\end{document} by Espelage et al. (Graph-theoretic concepts in computer science, vol 2204. Springer, Berlin, 2001), and it also matches with the lower bound result by Fomin et al. that, unless the Exponential Time Hypothesis fails, there is no algorithm running in time no(k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n^{o(k)}$$\end{document} (Fomin et al. in SIAM J Comput 43:1541–1563, 2014). We present a technique of representative sets using two-edge colored multigraphs on k vertices. The essential idea is that, for a two-edge colored multigraph, the existence of an Eulerian trail that uses edges with different colors alternately can be determined by two information: the number of colored edges incident with each vertex, and the connectedness of the multigraph. With this idea, we avoid the bottleneck of the naive algorithm, which stores all the possible multigraphs on k vertices with at most n edges.
引用
收藏
页码:1654 / 1674
页数:20
相关论文
共 50 条
  • [1] An optimal XP algorithm for Hamiltonian Cycle on graphs of bounded clique-width
    Bergougnoux, Benjamin
    Kante, Mamadou Moustapha
    Kwon, O-joung
    ALGORITHMS AND DATA STRUCTURES: 15TH INTERNATIONAL SYMPOSIUM, WADS 2017, 2017, 10389 : 121 - 132
  • [2] An Optimal XP Algorithm for Hamiltonian Cycle on Graphs of Bounded Clique-Width
    Bergougnoux, Benjamin
    Kante, Mamadou Moustapha
    Kwon, O-joung
    ALGORITHMICA, 2020, 82 (06) : 1654 - 1674
  • [3] Optimal Centrality Computations Within Bounded Clique-Width Graphs
    Guillaume Ducoffe
    Algorithmica, 2022, 84 : 3192 - 3222
  • [5] Line graphs of bounded clique-width
    Gurski, Frank
    Wanke, Egon
    DISCRETE MATHEMATICS, 2007, 307 (22) : 2734 - 2754
  • [6] Alliances in graphs of bounded clique-width
    Kiyomi, Masashi
    Otachi, Yota
    DISCRETE APPLIED MATHEMATICS, 2017, 223 : 91 - 97
  • [7] Optimal Centrality Computations Within Bounded Clique-Width Graphs
    Ducoffe, Guillaume
    ALGORITHMICA, 2022, 84 (11) : 3192 - 3222
  • [8] Coloring powers of graphs of bounded clique-width
    Todinca, I
    GRAPH-THEORETIC CONCEPTS IN COMPUTER SCIENCE, 2003, 2880 : 370 - 382
  • [9] Recent developments on graphs of bounded clique-width
    Kaminski, Marcin
    Lozin, Vadim V.
    Milanic, Martin
    DISCRETE APPLIED MATHEMATICS, 2009, 157 (12) : 2747 - 2761
  • [10] Critical properties of graphs of bounded clique-width
    Lozin, Vadim V.
    Milanic, Martin
    DISCRETE MATHEMATICS, 2013, 313 (09) : 1035 - 1044