Progress on Numerator Expansions for Affine Kac-Moody Algebras

被引:0
|
作者
Ronald C. King
机构
[1] Faculty of Mathematics Studies,
[2] University of Southampton,undefined
[3] Southampton SO17 1BJ,undefined
[4] England,undefined
[5] e-mail: r.c.king@maths.soton.ac.uk,undefined
关键词
Keywords: affine Kac-Moody algebras, Macdonald identities, character formulae, Young diagrams, affine Weyl groups, numerator expansions;
D O I
10.1007/s00026-001-8018-4
中图分类号
学科分类号
摘要
The Weyl-Kac character formula for affine Kac-Moody algebras is recast as a quotient whose numerator and denominator can both be expressed as infinite sums of characters of irreducible highest weight representations of simple Lie subalgebra of the same rank. The denominator expansions, which coincide with well known Macdonald identities, are expressed here in terms of infinite series of characters, specified by particular types of partitions, subject to rank-dependent modification rules. It is shown that certain numberings of the associated Young diagrams provide a convenient framework for writing down contributions to the corresponding numerator expansions. In the case of the seven infinite series of affine Kac-Moody algebras that are indexed by their rank, progress is reported on the extent to which their numerator expansions can be completely determined.
引用
收藏
页码:381 / 395
页数:14
相关论文
共 50 条
  • [21] Regular representation of affine Kac-Moody algebras
    Feigin, B
    Parkhomenko, S
    ALGEBRAIC AND GEOMETRIC METHODS IN MATHEMATICAL PHYSICS, 1996, 19 : 415 - 424
  • [22] Graded subalgebras of affine Kac-Moody algebras
    Y. Barnea
    A. Shalev
    E. I. Zelmanov
    Israel Journal of Mathematics, 1998, 104 : 321 - 334
  • [23] Langlands decomposition of affine Kac-Moody algebras
    Das, B.
    Pati, K. C.
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2007, 38 (06): : 533 - 552
  • [24] ORBIT DEPTHS OF AFFINE KAC-MOODY ALGEBRAS
    CAPPS, RH
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (11): : 1851 - 1860
  • [25] Varieties and identities of affine Kac-Moody algebras
    Zaicev, MV
    METHODS IN RING THEORY: PROCEEDINGS OF THE TRENTO CONFERENCE, 1998, 198 : 303 - 314
  • [26] ORTHOGONAL SYMMETRIC AFFINE KAC-MOODY ALGEBRAS
    Freyn, Walter
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 367 (10) : 7133 - 7159
  • [27] A characterization of affine Kac-Moody lie algebras
    Allison, BN
    Berman, S
    Gao, Y
    Pianzola, A
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 185 (03) : 671 - 688
  • [28] Gradings and contractions of affine Kac-Moody algebras
    Daboul, Claudia
    Daboul, Jamil
    de Montigny, Marc
    JOURNAL OF MATHEMATICAL PHYSICS, 2008, 49 (06)
  • [29] Geometric realizations of affine Kac-Moody algebras
    Futorny, Vyacheslav
    Krizka, Libor
    Somberg, Petr
    JOURNAL OF ALGEBRA, 2019, 528 : 177 - 216
  • [30] A Characterization of Affine Kac-Moody Lie Algebras
    Bruce N. Allison
    Stephen Berman
    Yun Gao
    Arturo Pianzola
    Communications in Mathematical Physics, 1997, 185 : 671 - 688