Progress on Numerator Expansions for Affine Kac-Moody Algebras

被引:0
|
作者
Ronald C. King
机构
[1] Faculty of Mathematics Studies,
[2] University of Southampton,undefined
[3] Southampton SO17 1BJ,undefined
[4] England,undefined
[5] e-mail: r.c.king@maths.soton.ac.uk,undefined
关键词
Keywords: affine Kac-Moody algebras, Macdonald identities, character formulae, Young diagrams, affine Weyl groups, numerator expansions;
D O I
10.1007/s00026-001-8018-4
中图分类号
学科分类号
摘要
The Weyl-Kac character formula for affine Kac-Moody algebras is recast as a quotient whose numerator and denominator can both be expressed as infinite sums of characters of irreducible highest weight representations of simple Lie subalgebra of the same rank. The denominator expansions, which coincide with well known Macdonald identities, are expressed here in terms of infinite series of characters, specified by particular types of partitions, subject to rank-dependent modification rules. It is shown that certain numberings of the associated Young diagrams provide a convenient framework for writing down contributions to the corresponding numerator expansions. In the case of the seven infinite series of affine Kac-Moody algebras that are indexed by their rank, progress is reported on the extent to which their numerator expansions can be completely determined.
引用
收藏
页码:381 / 395
页数:14
相关论文
共 50 条
  • [1] SUBJOININGS OF AFFINE KAC-MOODY ALGEBRAS
    LENG, X
    PATERA, J
    SHARP, RT
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (15): : 3397 - 3407
  • [2] Varieties of affine Kac-Moody algebras
    Zaitsev, MV
    MATHEMATICAL NOTES, 1997, 62 (1-2) : 80 - 86
  • [3] Varieties of affine Kac-Moody algebras
    M. V. Zaitsev
    Mathematical Notes, 1997, 62 : 80 - 86
  • [4] Tubular algebras and affine Kac-Moody algebras
    Zheng-xin CHEN & Ya-nan LIN School of Mathematics and Computer Science
    School of Mathematical Sciences
    Science in China(Series A:Mathematics), 2007, (04) : 521 - 532
  • [5] Tubular algebras and affine Kac-Moody algebras
    Chen, Zheng-an
    Lin, Ya-nan
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2007, 50 (04): : 521 - 532
  • [6] AUTOMORPHISMS OF AFFINE KAC-MOODY ALGEBRAS
    BAUSCH, J
    TITS, J
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1986, 302 (11): : 409 - 412
  • [7] Characters of affine Kac-Moody algebras
    Hussin, A
    King, RC
    GROUP 21 - PHYSICAL APPLICATIONS AND MATHEMATICAL ASPECTS OF GEOMETRY, GROUPS, AND ALGEBRA, VOLS 1 AND 2, 1997, : 162 - 166
  • [8] Tubular algebras and affine Kac-Moody algebras
    Zheng-xin Chen
    Ya-nan Lin
    Science in China Series A: Mathematics, 2007, 50 : 521 - 532
  • [9] Identities of affine Kac-Moody algebras
    Zaicev, MV
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1996, (02): : 33 - 36
  • [10] WEYL ORBITS AND THEIR EXPANSIONS IN IRREDUCIBLE REPRESENTATIONS FOR AFFINE KAC-MOODY ALGEBRAS
    BEGIN, F
    SHARP, RT
    JOURNAL OF MATHEMATICAL PHYSICS, 1992, 33 (07) : 2343 - 2356