Upper bounds of the first eigenvalue of closed hypersurfaces by the quotient area/volume

被引:0
|
作者
Fernando Giménez
Vicente Miquel
J. Javier Orengo
机构
[1] Universidad Politécnica de Valencia,Dpto de Matemáticas
[2] Universidad de Valencia,Dpto de Geometría y Topología
[3] Universidad de Castilla La Mancha,Dpto de Matemática Aplicada
来源
Archiv der Mathematik | 2004年 / 83卷
关键词
53C42; 52C21;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we obtain, for compact hypersurfaces M embedded into Hadamard manifolds, an upper sharp bound of the first closed eigenvalue. This bound depends on the isoperimetric quotient Volume(M)/Volume(Ω), where Ω is the domain enclosed by M. More precise bounds are given when the ambient space is the complex or quaternionic hyperbolic space.
引用
收藏
页码:279 / 288
页数:9
相关论文
共 50 条
  • [41] Isoperimetric bounds for the first eigenvalue of the Laplacian
    Wang, Qiaoling
    Xia, Changyu
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2010, 61 (01): : 171 - 175
  • [42] UPPER BOUNDS FOR THE LARGEST EIGENVALUE OF A BIPARTITE GRAPH
    Merikoski, Jorma K.
    Kumar, Ravinder
    Rajput, Ram Asrey
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2013, 26 : 168 - 176
  • [43] Isoperimetric bounds for the first eigenvalue of the Laplacian
    Qiaoling Wang
    Changyu Xia
    Zeitschrift für angewandte Mathematik und Physik, 2010, 61 : 171 - 175
  • [44] Combinatorial upper bounds for the smallest eigenvalue of a graph
    Esmailpour, Aryan
    Madani, Sara Saeedi
    Kiani, Dariush
    ARCHIV DER MATHEMATIK, 2024, 123 (01) : 29 - 38
  • [45] UPPER BOUNDS FOR EIGENVALUES OF QUADRATIC EIGENVALUE PROBLEMS
    LINDEN, H
    NUMERISCHE MATHEMATIK, 1976, 26 (01) : 17 - 26
  • [46] Eigenvalue upper bounds for the discretized Stokes operator
    Bitar, L
    Vincent, C
    COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, 2000, 16 (07): : 449 - 457
  • [47] Upper Bounds on the Smallest Positive Eigenvalue of Trees
    Sonu Rani
    Sasmita Barik
    Annals of Combinatorics, 2023, 27 : 19 - 29
  • [48] Upper bounds on the eigenvalue ratio for vibrating strings
    Huang, Min-Jei
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 430 (01) : 403 - 409
  • [49] UPPER AND LOWER BOUNDS IN LINEAR EIGENVALUE PROBLEMS
    MASUR, EF
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (07): : A682 - A682
  • [50] Upper Bounds on the Smallest Positive Eigenvalue of Trees
    Rani, Sonu
    Barik, Sasmita
    ANNALS OF COMBINATORICS, 2023, 27 (01) : 19 - 29