Transport in Quantum Multi-barrier Systems as Random Walks on a Lattice

被引:0
|
作者
E. N. M. Cirillo
M. Colangeli
L. Rondoni
机构
[1] Sapienza Università di Roma,Dipartimento di Scienze di Base e Applicate per l’Ingegneria
[2] Università degli Studi dell’Aquila,Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica
[3] Politecnico di Torino,Dipartimento di Scienze Matematiche, Dipartimento di Eccellenza 2018–2022
[4] INFN,undefined
[5] Sezione di Torino,undefined
来源
关键词
Kronig–Penney model; Zero range process; Transfer matrix; Stationary current; Non-equilibrium steady states;
D O I
暂无
中图分类号
学科分类号
摘要
A quantum finite multi-barrier system, with a periodic potential, is considered and exact expressions for its plane wave amplitudes are obtained using the Transfer Matrix method (Colangeli et al. in J Stat Mech Theor Exp 6:P06006, 2015). This quantum model is then associated with a stochastic process of independent random walks on a lattice, by properly relating the wave amplitudes with the hopping probabilities of the particles moving on the lattice and with the injection rates from external particle reservoirs. Analytical and numerical results prove that the stationary density profile of the particle system overlaps with the quantum mass density profile of the stationary Schrödinger equation, when the parameters of the two models are suitably matched. The equivalence between the quantum model and a stochastic particle system would mainly be fruitful in a disordered setup. Indeed, we also show, here, that this connection, analytically proven to hold for periodic barriers, holds even when the width of the barriers and the distance between barriers are randomly chosen.
引用
收藏
页码:692 / 709
页数:17
相关论文
共 50 条
  • [41] Exclusion statistics and lattice random walks
    Ouvry, Stephane
    Polychronakos, Alexios P.
    NUCLEAR PHYSICS B, 2019, 948
  • [42] RANDOM-WALKS ON A LATTICE OF OBSTACLES
    ZHELIGOVSKAYA, EA
    TERNOVSKII, FF
    KHOKHLOV, AR
    THEORETICAL AND MATHEMATICAL PHYSICS, 1988, 75 (03) : 644 - 654
  • [43] On the number of jumps of random walks with a barrier
    Iksanov, Alex
    Moehle, Martin
    ADVANCES IN APPLIED PROBABILITY, 2008, 40 (01) : 206 - 228
  • [44] Random walks and localization on the Penrose lattice
    Kunz, M
    PHYSICA B, 2000, 293 (1-2): : 164 - 182
  • [45] Random walks on finite lattice tubes
    Henry, BI
    Batchelor, MT
    PHYSICAL REVIEW E, 2003, 68 (01):
  • [46] RANDOM-WALKS ON THE BETHE LATTICE
    HUGHES, BD
    SAHIMI, M
    JOURNAL OF STATISTICAL PHYSICS, 1982, 29 (04) : 781 - 794
  • [47] Visible lattice points in random walks
    Cilleruelo, Javier
    Fernandez, Jose L.
    Fernandez, Pablo
    EUROPEAN JOURNAL OF COMBINATORICS, 2019, 75 : 92 - 112
  • [48] Quantum Random Walks and Thermalisation
    Alexander C. R. Belton
    Communications in Mathematical Physics, 2010, 300 : 317 - 329
  • [49] Quantum walks on a random environment
    Yin, Yue
    Katsanos, D. E.
    Evangelou, S. N.
    PHYSICAL REVIEW A, 2008, 77 (02):
  • [50] Open Quantum Random Walks
    S. Attal
    F. Petruccione
    C. Sabot
    I. Sinayskiy
    Journal of Statistical Physics, 2012, 147 : 832 - 852