On Intersection Problem for Perfect Binary Codes

被引:0
|
作者
Sergey V. Avgustinovich
Olof Heden
Faina I. Solov’eva
机构
[1] Sobolev institute of Mathematics,Department of Mathematics
[2] KTH,undefined
来源
关键词
Perfect binary codes; 94B25;
D O I
暂无
中图分类号
学科分类号
摘要
The main result is that to any even integer q in the interval 0 ≤  q ≤  2n+1-2log(n+1), there are two perfect codes C1 and C2 of length n = 2m − 1, m ≥ 4, such that |C1 ∩ C2| = q.
引用
收藏
页码:317 / 322
页数:5
相关论文
共 50 条
  • [21] On nonsystematic perfect binary codes of length 15
    Romanov, AM
    DISCRETE APPLIED MATHEMATICS, 2004, 135 (1-3) : 255 - 258
  • [22] Obtaining Binary Perfect Codes Out of Tilings
    Miyamoto, Gabriella Akemi
    Firer, Marcelo
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2020, 66 (10) : 6121 - 6132
  • [23] Rank Spectrum of Propelinear Perfect Binary Codes
    Guskov, George K.
    Mogilnykh, Ivan Yu.
    Solov'eva, Faina I.
    2013 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT), 2013, : 879 - +
  • [24] On a lower bound on the number of perfect binary codes
    Malyugin, SA
    DISCRETE APPLIED MATHEMATICS, 2004, 135 (1-3) : 157 - 160
  • [25] On the Ranks and Kernels Problem for Perfect Codes
    S. V. Avgustinovich
    F. I. Solov'eva
    O. Heden
    Problems of Information Transmission, 2003, 39 (4) : 341 - 345
  • [26] Perfect codes in proper intersection power graphs of finite groups
    Ma, Xuanlong
    Li, Lan
    Zhong, Guo
    Applicable Algebra in Engineering, Communications and Computing, 2023,
  • [27] Perfect codes in proper intersection power graphs of finite groups
    Ma, Xuanlong
    Li, Lan
    Zhong, Guo
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2023,
  • [28] LINEAR BINARY-CODES WITH INTERSECTION-PROPERTIES
    MIKLOS, D
    DISCRETE APPLIED MATHEMATICS, 1984, 9 (02) : 187 - 196
  • [29] Structure of i-components of perfect binary codes
    Solov'eva, FI
    DISCRETE APPLIED MATHEMATICS, 2001, 111 (1-2) : 189 - 197
  • [30] On separability of the classes of homogeneous and transitive perfect binary codes
    I. Yu. Mogilnykh
    F. I. Solov’eva
    Problems of Information Transmission, 2015, 51 : 139 - 147