On Intersection Problem for Perfect Binary Codes

被引:0
|
作者
Sergey V. Avgustinovich
Olof Heden
Faina I. Solov’eva
机构
[1] Sobolev institute of Mathematics,Department of Mathematics
[2] KTH,undefined
来源
关键词
Perfect binary codes; 94B25;
D O I
暂无
中图分类号
学科分类号
摘要
The main result is that to any even integer q in the interval 0 ≤  q ≤  2n+1-2log(n+1), there are two perfect codes C1 and C2 of length n = 2m − 1, m ≥ 4, such that |C1 ∩ C2| = q.
引用
收藏
页码:317 / 322
页数:5
相关论文
共 50 条
  • [1] On intersection problem for perfect binary codes
    Avgustinovich, SV
    Heden, O
    Solov'eva, FI
    DESIGNS CODES AND CRYPTOGRAPHY, 2006, 39 (03) : 317 - 322
  • [2] Intersection matrices for partitions by binary perfect codes
    Avgustinovich, SV
    Lobstein, AC
    Solov'eva, FI
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2001, 47 (04) : 1621 - 1624
  • [3] On perfect binary codes
    Solov'eva, Faina I.
    DISCRETE APPLIED MATHEMATICS, 2008, 156 (09) : 1488 - 1498
  • [4] AN INTERSECTION PROBLEM FOR CODES
    FRANKL, P
    DISCRETE MATHEMATICS, 1990, 84 (02) : 135 - 141
  • [5] On the Intersection of Binary Linear Codes
    LIAO Dajian
    LIU Zihui
    JournalofSystemsScience&Complexity, 2016, 29 (03) : 814 - 824
  • [6] On the Intersection of Binary Linear Codes
    Liao Dajian
    Liu Zihui
    JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2016, 29 (03) : 814 - 824
  • [7] On the intersection of binary linear codes
    Dajian Liao
    Zihui Liu
    Journal of Systems Science and Complexity, 2016, 29 : 814 - 824
  • [8] Involutions in Binary Perfect Codes
    Fernandez-Cordoba, Cristina
    Phelps, Kevin T.
    Villanueva, Merce
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2011, 57 (09) : 5926 - 5932
  • [9] On New Perfect Binary Nonlinear Codes
    A. C. Lobstein
    V. A. Zinoviev
    Applicable Algebra in Engineering, Communication and Computing, 1997, 8 : 415 - 420
  • [10] Criteria for nonsystematicness of perfect binary codes
    Malyugin, SA
    DOKLADY MATHEMATICS, 2000, 62 (03) : 325 - 327