The smoothed number of Pareto-optimal solutions in bicriteria integer optimization

被引:0
|
作者
René Beier
Heiko Röglin
Clemens Rösner
Berthold Vöcking
机构
[1] Max-Planck-Institut für Informatik,Department of Computer Science
[2] University of Bonn,Department of Computer Science
[3] RWTH Aachen University,undefined
来源
Mathematical Programming | 2023年 / 200卷
关键词
Smoothed analysis; Pareto-optimal solutions; Integer optimization; Bicriteria optimization;
D O I
暂无
中图分类号
学科分类号
摘要
A well-established heuristic approach for solving bicriteria optimization problems is to enumerate the set of Pareto-optimal solutions. The heuristics following this principle are often successful in practice. Their running time, however, depends on the number of enumerated solutions, which is exponential in the worst case. We study bicriteria integer optimization problems in the model of smoothed analysis, in which inputs are subject to a small amount of random noise, and we prove an almost tight polynomial bound on the expected number of Pareto-optimal solutions. Our results give rise to tight polynomial bounds for the expected running time of the Nemhauser-Ullmann algorithm for the knapsack problem and they improve known results on the running times of heuristics for the bounded knapsack problem and the bicriteria shortest path problem.
引用
收藏
页码:319 / 355
页数:36
相关论文
共 50 条
  • [21] Pareto-optimal Allocation
    Oberender, Peter
    Goetz, Andreas
    GESUNDHEITSOEKONOMIE UND QUALITAETSMANAGEMENT, 2013, 18 (04): : 154 - 154
  • [22] DISTRIBUTED PARETO-OPTIMAL SOLUTIONS VIA DIFFUSION ADAPTATION
    Chen, Jianshu
    Sayed, Ali H.
    2012 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2012, : 648 - 651
  • [23] Dual approach to minimization on the set of Pareto-optimal solutions
    Thach, PT
    Konno, H
    Yokota, D
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1996, 88 (03) : 689 - 707
  • [24] Pareto-optimal alloys
    Bligaard, T
    Jóhannesson, GH
    Ruban, AV
    Skriver, HL
    Jacobsen, KW
    Norskov, JK
    APPLIED PHYSICS LETTERS, 2003, 83 (22) : 4527 - 4529
  • [25] Efficient generation of pareto-optimal topologies for compliance optimization
    Turevsky, Inna
    Suresh, Krishnan
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2011, 87 (12) : 1207 - 1228
  • [27] Pareto-optimal solutions for multicriteria optimization of a chemical engineering process using a diploid genetic algorithm
    Mokeddem, D.
    Khellaf, A.
    Computers and Chemical Engineering, 2008, 32 (06): : 1106 - 1113
  • [28] Design of robust pole assignment based on Pareto-optimal solutions
    Tagami, T
    Ikeda, K
    ASIAN JOURNAL OF CONTROL, 2003, 5 (02) : 195 - 205
  • [30] Effective Visualisation of the High-Dimensional Pareto-Optimal Solutions
    Mokhtar, Maizura
    Hunt, Ian
    Burns, Stephen
    Ross, Dave
    PROCEEDINGS OF THE 2017 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION (GECCO'17 COMPANION), 2017, : 9 - 10