Classification of maximal subgroups of odd index in finite simple classical groups

被引:0
|
作者
N. V. Maslova
机构
[1] Ural Division of the Russian Academy of Sciences,Institute of Mathematics and Mechanics
来源
Proceedings of the Steklov Institute of Mathematics | 2009年 / 267卷
关键词
finite simple classical group; maximal subgroup; odd index;
D O I
暂无
中图分类号
学科分类号
摘要
The classification of maximal subgroups of odd index in finite simple classical groups is obtained.
引用
收藏
页码:164 / 183
页数:19
相关论文
共 50 条
  • [11] On the pronormality of subgroups of odd index in finite simple groups
    A. S. Kondrat’ev
    N. V. Maslova
    D. O. Revin
    Siberian Mathematical Journal, 2015, 56 : 1101 - 1107
  • [12] On the pronormality of subgroups of odd index in finite simple symplectic groups
    Kondrat'ev, A. S.
    Maslova, N. V.
    Revin, D. O.
    SIBERIAN MATHEMATICAL JOURNAL, 2017, 58 (03) : 467 - 475
  • [13] On the pronormality of subgroups of odd index in finite simple symplectic groups
    A. S. Kondrat’ev
    N. V. Maslova
    D. O. Revin
    Siberian Mathematical Journal, 2017, 58 : 467 - 475
  • [14] Maximal subgroups of small index of finite almost simple groups
    Ballester-Bolinches, Adolfo
    Esteban-Romero, Ramon
    Jimenez-Seral, Paz
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2022, 116 (04)
  • [15] Maximal subgroups of small index of finite almost simple groups
    Adolfo Ballester-Bolinches
    Ramón Esteban-Romero
    Paz Jiménez-Seral
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2022, 116
  • [16] On finite simple groups with the same smallest index of maximal subgroups
    Li, XH
    ALGEBRA COLLOQUIUM, 2004, 11 (02) : 271 - 286
  • [17] Nonpronormal subgroups of odd index in finite simple linear and unitary groups
    Guo, W.
    Maslova, N., V
    Revin, D. O.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2024, 30 (01): : 70 - 79
  • [18] Nonpronormal Subgroups of Odd Index in Finite Simple Linear and Unitary Groups
    Guo, Wenbin
    Maslova, N. V.
    Revin, D. O.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2024, 325 (SUPPL 1) : S114 - S122
  • [19] Relatively Maximal Subgroups of Odd Index in Symmetric Groups
    A. S. Vasil’ev
    D. O. Revin
    Algebra and Logic, 2022, 61 : 104 - 124
  • [20] Maximal Solvable Subgroups of Odd Index in Symmetric Groups
    K. Yu. Korotitskii
    D. O. Revin
    Algebra and Logic, 2020, 59 : 114 - 128