Preparation of β-Ca3(PO4)2/Poly(D,L-lactide) and β-Ca3(PO4)2/Poly(ε-caprolactone) Biocomposite Implants for Bone Substitution

被引:0
|
作者
D. M. Zuev
E. S. Klimashina
P. V. Evdokimov
Ya. Yu. Filippov
V. I. Putlyaev
机构
[1] Faculty of Materials Science,
来源
Inorganic Materials | 2018年 / 54卷
关键词
3D printing; bioresorbable materials; composites; tricalcium phosphate; thermal extrusion; plasma processing; surface hydrophilicity;
D O I
暂无
中图分类号
学科分类号
摘要
Highly permeable macroporous implants of various architectures for bone grafting have been fabricated by thermal extrusion 3D printing using highly filled β-Ca3(PO4)2/poly(D,L-lactide) (degree of filling up to 70 wt %) and β-Ca3(PO4)2/poly(ε-caprolactone) (degree of filling up to 70 wt %) composite filaments. To modify the surface of the composite macroporous implants with the aim of improving their wettability by saline solutions, we have proposed exposing them to a cathode discharge plasma (2.5 W, air as plasma gas) in combination with subsequent etching in a 0.5 M citric acid solution. It has been shown that the main contribution to changes in the wettability (contact angle) of the composites is made by the changes produced in their surface morphology by etching in a low-temperature plasma and citric acid. An alternative approach to surface modification of the composites is to produce a carbonate hydroxyapatite layer via precipitation from a simulated body fluid solution a factor of 5 supersaturated relative to its natural analog (5xSBF).
引用
收藏
页码:87 / 95
页数:8
相关论文
共 50 条
  • [21] Effect of MgO on Vacuum Carbothermal Reduction Mechanism of Ca3(PO4)2 in SiO2–C–Ca3(PO4)2–MgO-Based System
    Miao Li
    Renlin Zhu
    Run Huang
    Xianfen Li
    Xiaodong Lv
    Jing Yang
    Xue Deng
    Xianze Long
    Journal of Sustainable Metallurgy, 2023, 9 : 1429 - 1443
  • [22] α-Ca3(PO4)2的晶相转变研究
    王新荣
    阮立坚
    硅酸盐学报, 1992, (02) : 117 - 122
  • [23] Energy-preeminent isomer of the Ca3(PO4)2 cluster
    Treboux, G
    Kanzaki, N
    Onuma, K
    Ito, A
    JOURNAL OF PHYSICAL CHEMISTRY A, 1999, 103 (40): : 8118 - 8120
  • [24] Calculated Evaluation of the Energies of Point Defects in α- and β-Ca3(PO4)2
    Sh. A. Musoev
    A. V. Knotko
    N. N. Eremin
    Crystallography Reports, 2023, 68 : 1010 - 1015
  • [25] Color tracing in the hydration process of α-Ca3(PO4)2:Eu
    Luo, Dongping
    Tong, Chao
    Zhu, Yangguang
    Xu, Chuanyan
    Li, Yadong
    JOURNAL OF LUMINESCENCE, 2020, 219
  • [26] Phase relation in the system Ca3(PO4)2-MgSiO3
    Kumamoto Inst of Technology, Kumamoto-shi, Japan
    Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi/Journal of the Ceramic Society of Japan, 1996, 104 (1210): : 490 - 496
  • [27] The infrared and Raman spectra of β- and α-tricalcium phosphate (Ca3(PO4)2)
    Jillavenkatesa, A
    Condrate, RA
    SPECTROSCOPY LETTERS, 1998, 31 (08) : 1619 - 1634
  • [28] Calculated Evaluation of the Energies of Point Defects in α- and β-Ca3(PO4)2
    Musoev, Sh. A.
    Knotko, A. V.
    Eremin, N. N.
    CRYSTALLOGRAPHY REPORTS, 2023, 68 (07) : 1010 - 1015
  • [29] FUNDAMENTAL EQUATION OF THE REACTION OF THE REDUCTION OF CA3(PO4)2 BY METHANE
    KURTININ, AN
    KLIMOVICH, AI
    KRIKLIVYI, DI
    KOVALCHUK, AV
    JOURNAL OF APPLIED CHEMISTRY OF THE USSR, 1980, 53 (04): : 555 - 561
  • [30] Machinable Dy-containing β-Ca3(PO4)2 ceramics
    Min, W
    Daimon, K
    Doi, Y
    Suzuki, T
    Hikichi, Y
    Miyamoto, M
    JOURNAL OF ALLOYS AND COMPOUNDS, 2000, 311 (01) : 79 - 81