Efficient Quantum Algorithms of Finding the Roots of a Polynomial Function

被引:0
|
作者
Koji Nagata
Tadao Nakamura
Han Geurdes
Josep Batle
Ahmed Farouk
Do Ngoc Diep
Santanu Kumar Patro
机构
[1] Korea Advanced Institute of Science and Technology,Department of Physics
[2] Keio University,Department of Information and Computer Science
[3] Geurdes Datascience,Departament de Física
[4] Universitat de les Illes Balears,Department of Physics and Computer Science, Faculty of Science
[5] Wilfrid Laurier University,TIMAS
[6] Thang Long University,Institute of Mathematics
[7] VAST,Department of Mathematics
[8] Berhampur University,undefined
来源
International Journal of Theoretical Physics | 2018年 / 57卷
关键词
Quantum computation; Quantum algorithms;
D O I
暂无
中图分类号
学科分类号
摘要
Two quantum algorithms of finding the roots of a polynomial function f(x) = xm + am− 1xm− 1 + ... + a1x + a0 are discussed by using the Bernstein-Vazirani algorithm. One algorithm is presented in the modulo 2. The other algorithm is presented in the modulo d. Here all the roots are in the integers Z. The speed of solving the problem is shown to outperform the best classical case by a factor of m in both cases.
引用
收藏
页码:2546 / 2555
页数:9
相关论文
共 50 条
  • [31] A GLOBALLY CONVERGENT METHOD FOR SIMULTANEOUSLY FINDING POLYNOMIAL ROOTS
    PASQUINI, L
    TRIGIANTE, D
    MATHEMATICS OF COMPUTATION, 1985, 44 (169) : 135 - 149
  • [32] Mixed parallel iteration method for finding roots of a polynomial
    Weidianzixue yu Jisuanji, 4 (52-56):
  • [33] A POLYALGORITHM FOR FINDING ROOTS AND ERROR BOUNDS FOR POLYNOMIAL EQUATIONS
    EIDSON, HD
    MCDONALD, AE
    WILKSINS.BM
    YOUNG, DM
    SIAM REVIEW, 1969, 11 (01) : 111 - &
  • [34] FINDING POLYNOMIAL ROOTS BY DYNAMICAL SYSTEMS - A CASE STUDY
    Shemyakov, Sergey
    Chernov, Roman
    Rumiantsau, Dzmitry
    Schleicher, Dierk
    Schmitt, Simon
    Shemyakov, Anton
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2020, 40 (12) : 6945 - 6965
  • [35] Quantum algorithms for subset finding
    Childs, AM
    Eisenberg, JM
    QUANTUM INFORMATION & COMPUTATION, 2005, 5 (07) : 593 - 604
  • [36] An Algorithms for Finding the Cube Roots in Finite Fields
    Faisal
    Rojali
    Bin Mohamad, Mohd Sham
    5TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND COMPUTATIONAL INTELLIGENCE 2020, 2021, 179 : 838 - 844
  • [37] On efficient algorithms for finding efficient salvo policies
    van Ee, Martijn
    NAVAL RESEARCH LOGISTICS, 2020, 67 (02) : 147 - 158
  • [39] EFFICIENT POLYNOMIAL ALGORITHMS FOR DISTRIBUTIVE LATTICES
    BORDAT, JP
    DISCRETE APPLIED MATHEMATICS, 1991, 32 (01) : 31 - 50
  • [40] POLYNOMIAL ALGORITHMS FOR FINDING CYCLES AND PATHS IN BIPARTITE TOURNAMENTS
    MANOUSSAKIS, Y
    TUZA, Z
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 1990, 3 (04) : 537 - 543