Correction to: Intrinsic curvature of curves and surfaces and a Gauss–Bonnet theorem in the Heisenberg group

被引:0
|
作者
Zoltán M. Balogh
Jeremy T. Tyson
Eugenio Vecchi
机构
[1] Universität Bern,Mathematisches Institut
[2] University of Illinois,Department of Mathematics
[3] Università di Bologna,Dipartimento di Matematica
来源
Mathematische Zeitschrift | 2020年 / 296卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In the publication [1] there is an unfortunate computational error, which however does not affect the correctness of the main results.
引用
收藏
页码:875 / 876
页数:1
相关论文
共 50 条
  • [1] Intrinsic curvature of curves and surfaces and a Gauss–Bonnet theorem in the Heisenberg group
    Zoltán M. Balogh
    Jeremy T. Tyson
    Eugenio Vecchi
    Mathematische Zeitschrift, 2017, 287 : 1 - 38
  • [2] Intrinsic curvature of curves and surfaces and a Gauss-Bonnet theorem in the Heisenberg group
    Balogh, Zoltan M.
    Tyson, Jeremy T.
    Vecchi, Eugenio
    MATHEMATISCHE ZEITSCHRIFT, 2017, 287 (1-2) : 1 - 38
  • [3] Intrinsic curvature of curves and surfaces and a Gauss-Bonnet theorem in the Heisenberg group (vol 287, pg 1, 2017)
    Balogh, Zoltan M.
    Tyson, Jeremy T.
    Vecchi, Eugenio
    MATHEMATISCHE ZEITSCHRIFT, 2020, 296 (1-2) : 875 - 876
  • [4] The Sub-Riemannian Limit of Curvatures for Curves and Surfaces and a Gauss-Bonnet Theorem in the Rototranslation Group
    Liu, Haiming
    Miao, Jiajing
    Li, Wanzhen
    Guan, Jianyun
    JOURNAL OF MATHEMATICS, 2021, 2021
  • [5] Correction to: The total intrinsic curvature of curves in Riemannian surfaces
    Domenico Mucci
    Alberto Saracco
    Rendiconti del Circolo Matematico di Palermo Series 2, 2021, 70 : 1137 - 1138
  • [6] Gauss-Bonnet theorems and the Lorentzian Heisenberg group
    Wu, Tong
    Wei, Sining
    Wang, Yong
    TURKISH JOURNAL OF MATHEMATICS, 2021, 45 (02) : 718 - 741
  • [7] Gauss-Bonnet Theorem Related to the Semi-Symmetric Metric Connection in the Heisenberg Group
    Liu, Haiming
    Peng, Song
    SYMMETRY-BASEL, 2024, 16 (06):
  • [8] Gauss–Bonnet Theorems for Lorentzian and Spacelike Surfaces Associated to Canonical Connections in the Lorentzian Heisenberg Group
    H. Liu
    J. Guan
    Siberian Mathematical Journal, 2023, 64 : 471 - 499
  • [9] Gauss-Bonnet Theorem in Sub-Riemannian Heisenberg Space
    Diniz, M. M.
    Veloso, J. M. M.
    JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2016, 22 (04) : 807 - 820
  • [10] Gauss–Bonnet Theorems in the BCV Spaces and the Twisted Heisenberg Group
    Yong Wang
    Sining Wei
    Results in Mathematics, 2020, 75