Properties of LiNi0.8Co0.1Mn0.1O2 as a high energy cathode material for lithium-ion batteries

被引:0
|
作者
Duc-Luong Vu
Jae-won Lee
机构
[1] Dankook University,Department of Energy of Engineering
来源
关键词
Lithium-ion Battery; Cathode Material; LiNi; Co; Mn; O; Co-precipitation; Electrochemical Properties;
D O I
暂无
中图分类号
学科分类号
摘要
Nickel-rich layered materials are prospective cathode materials for use in lithium-ion batteries due to their higher capacity and lower cost relative to LiCoO2. In this work, spherical Ni0.8Co0.1Mn0.1(OH)2 precursors are successfully synthesized through a co-precipitation method. The synthetic conditions of the precursors - including the pH, stirring speed, molar ratio of NH4OH to transition metals and reaction temperature - are investigated in detail, and their variations have significant effects on the morphology, microstructure and tap-density of the prepared Ni0.8Co0.1Mn0.1 (OH)2 precursors. LiNi0.8Co0.1Mn0.1O2 is then prepared from these precursors through a reaction with 5% excess LiOH· H2O at various temperatures. The crystal structure, morphology and electrochemical properties of the Ni0.8Co0.1Mn0.1 (OH)2 precursors and LiNi0.8Co0.1Mn0.1O2 were investigated. In the voltage range from 3.0 to 4.3 V, LiNi0.8Co0.1Mn0.1O2 exhibits an initial discharge capacity of 193.0mAh g-1 at a 0.1 C-rate. The cathode delivers an initial capacity of 170.4 mAh g-1 at a 1 C-rate, and it retains 90.4% of its capacity after 100 cycles.
引用
收藏
页码:514 / 526
页数:12
相关论文
共 50 条
  • [21] High performance of phosphorus and fluorine co-doped LiNi0.8Co0.1Mn0.1O2 as a cathode material for lithium ion batteries
    Yuan, An
    Tang, Hao
    Liu, Li
    Ying, Jin
    Tan, Lian
    Tan, Long
    Sun, Runguang
    JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 844
  • [22] Influence of oxygen percentage in calcination atmosphere on structure and electrochemical properties of LiNi0.8Co0.1Mn0.1O2 cathode material for lithium-ion batteries
    Liang, Rui
    Yu, Fu-Da
    Goh, Kokswee
    Sun, Gang
    Wang, Min-Jun
    Zhu, Heng
    Liu, Xing-Yan
    Huang, Guo-Sheng
    Wang, Zhen-Bo
    CERAMICS INTERNATIONAL, 2019, 45 (15) : 18965 - 18971
  • [23] A short review on layered LiNi0.8Co0.1Mn0.1O2 positive electrode material for lithium-ion batteries
    Ding, Yin
    Wang, Rui
    Wang, Lei
    Cheng, Kailin
    Zhao, Zhikun
    Mu, DaoBin
    Wu, Borong
    8TH INTERNATIONAL CONFERENCE ON APPLIED ENERGY (ICAE2016), 2017, 105 : 2941 - 2952
  • [24] Synthesis and characteristics of layered LiNi0.8Co0.1Mn0.1O2 cathode material for lithium rechargeable batteries
    Wang, Xi-Min
    Wang, Xian-You
    Yi, Si-Yong
    Cao, Jun-Qi
    Guocheng Gongcheng Xuebao/The Chinese Journal of Process Engineering, 2007, 7 (04): : 817 - 821
  • [25] Study on Preparation and Performance of LiNi0.8Co0.1Mn0.1O2 as cathode materials for lithium ion batteries
    Wang, Mingming
    Shi, Fangchang
    Yang, Hongzhou
    Gao, Cunsi Sun Yanmin
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2020, 15 (10): : 9971 - 9980
  • [26] High Capacity Cathode Material of Nickel-Rich LiNi0.8Co0.1Mn0.1O2 Used in Lithium-Ion Power Batteries for Electric Vehicles
    Wang R.
    Ding Y.
    Mu D.
    Zhao Z.
    Li Y.
    Wu Y.
    Xie C.
    Tian W.
    Mu, Daobin (mudb@bit.edu.cn), 2017, Beijing Institute of Technology (26): : 8 - 15
  • [27] Alkali metal Na+ doped LiNi0.8Co0.1Mn0.1O2 cathode material with a stable structure and high performance for lithium-ion batteries
    Mao, Gaoqiang
    Yang, Ying
    Jiao, Wen
    Yu, Wanjing
    Yuan, Xinyang
    Tian, Qinghua
    Zeng, Leiying
    Jiang, Long
    Tong, Hui
    Guo, Xueyi
    JOURNAL OF MATERIALS SCIENCE, 2022, 57 (42) : 19892 - 19901
  • [28] Alkali metal Na+ doped LiNi0.8Co0.1Mn0.1O2 cathode material with a stable structure and high performance for lithium-ion batteries
    Gaoqiang Mao
    Ying Yang
    Wen Jiao
    Wanjing Yu
    Xinyang Yuan
    Qinghua Tian
    Leiying Zeng
    Long Jiang
    Hui Tong
    Xueyi Guo
    Journal of Materials Science, 2022, 57 : 19892 - 19901
  • [29] In Situ Construction of a Polymer Coating Layer on the LiNi0.8Co0.1Mn0.1O2 Cathode for High-Performance Lithium-Ion Batteries
    Lin, Zhiyuan
    Lin, Chenxiao
    Chen, Fang
    Yu, Ruoxin
    Xia, Yonggao
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (08) : 10692 - 10702
  • [30] Synthesis of Ni0.8Co0.1Mn0.1(OH)2 precursor and electrochemical performance of LiNi0.8Co0.1Mn0.1O2 cathode material for lithium batteries
    Huang, Yue
    Wang, Zhi-xing
    Li, Xin-hai
    Guo, Hua-jun
    Wang, Jie-xi
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2015, 25 (07) : 2253 - 2259