Lactobacillus plantarum FRT10 alleviated high-fat diet–induced obesity in mice through regulating the PPARα signal pathway and gut microbiota

被引:0
|
作者
Hongying Cai
Zhiguo Wen
Xiumei Li
Kun Meng
Peilong Yang
机构
[1] Chinese Academy of Agricultural Sciences,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Feed Research Institute
[2] National Engineering Research Center of Biological Feed,undefined
来源
关键词
FRT10; Sour dough; Obesity; Gut microbiota; PPARα;
D O I
暂无
中图分类号
学科分类号
摘要
Previous studies showed that probiotics supplementation contributed to alleviate obesity. This work was to assess the efficacy of Lactobacillus plantarum FRT10 from sour dough in alleviating obesity in mice fed with a high-fat diet (HFD), and the underlying mechanisms focusing on modulation of the gut microbiota profile. Kunming mice were fed with a regular diet (CT), a high-fat diet (HFD), and two HFDs containing low and high doses of L. plantarum FRT10 for 8 weeks. The physiological and biochemical modulations in liver were analyzed. Cecal contents were analyzed by high-throughput 16S ribosomal RNA sequencing. FRT10 supplementation significantly reduced body weight gain, fat weight, and liver triacylglycerols (TGs) and alanine aminotransferase (ALT) concentrations (P < 0.05). FRT10 significantly ameliorated the HFD-induced gut dysbiosis, as evidenced by increased abundance of microbes, including Butyricicoccus, Butyricimonas, Intestinimonas, Odoribacter, and Alistipes, and decreased abundance of Desulfovibrionaceae, Roseburia, and Lachnoclostridium. Lactobacillus, Bifidobacterium, and Akkermansia were markedly increased after FRT10 intervention. In addition, real-time quantitative PCR revealed that FRT10 upregulated the mRNA expression levels of peroxisome proliferator–activated receptor-α (PPARα) and carnitine palmitoyltransferase-1α (CPT1α), and downregulated the mRNA expression levels of sterol regulatory element–binding protein 1 (SREBP-1) and TG-synthesizing enzyme diacylglycerol acyltransferase 1 (DGAT1) in liver. These findings suggested that FRT10 had anti-obesity effects in obese mice partly related to the activation of PPARα/CPT1α pathway. FRT10 can be considered a single probiotic agent for preventing HFD-induced obesity in humans and animals.
引用
收藏
页码:5959 / 5972
页数:13
相关论文
共 50 条
  • [31] Acupuncture Regulating Gut Microbiota in Abdominal Obese Rats Induced by High-Fat Diet
    Wang, Haiying
    Wang, Qiang
    Liang, Cuimei
    Su, Mingxing
    Wang, Xin
    Li, Hua
    Hu, Hui
    Fang, Hongjuan
    EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE, 2019, 2019
  • [32] Chondroitin Sulfate Alleviated Obesity by Modulating Gut Microbiota and Liver Metabolome in High-Fat-Diet-Induced Obese Mice
    Gao, Ruichang
    Qi, Zexiu
    Lin, Jie
    Wang, Ge
    Chen, Ge
    Yuan, Li
    Sun, Quancai
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2023, 71 (24) : 9419 - 9428
  • [33] Cordycepin reduces weight through regulating gut microbiota in high-fat diet-induced obese rats
    An, Yanan
    Li, Yan
    Wang, Xueyan
    Chen, Zhaobin
    Xu, Hongyue
    Wu, Lingyu
    Li, Shulin
    Wang, Chao
    Luan, Wenjing
    Wang, Xuefei
    Liu, Mingyuan
    Tang, Xudong
    Yu, Lu
    LIPIDS IN HEALTH AND DISEASE, 2018, 17
  • [34] Cordycepin reduces weight through regulating gut microbiota in high-fat diet-induced obese rats
    Yanan An
    Yan Li
    Xueyan Wang
    Zhaobin Chen
    Hongyue Xu
    Lingyu Wu
    Shulin Li
    Chao Wang
    Wenjing Luan
    Xuefei Wang
    Mingyuan Liu
    Xudong Tang
    Lu Yu
    Lipids in Health and Disease, 17
  • [35] Puerarin prevents high-fat diet-induced obesity by enriching Akkermansia muciniphila in the gut microbiota of mice
    Wang, Lei
    Wu, Yongzheng
    Zhuang, Lingjia
    Chen, Xiufang
    Min, Haiyan
    Song, Shiyu
    Liang, Qiao
    Li, An-Dong
    Gao, Qian
    PLOS ONE, 2019, 14 (06):
  • [36] Adzuki Bean Alleviates Obesity and Insulin Resistance Induced by a High-Fat Diet and Modulates Gut Microbiota in Mice
    Zhao, Qingyu
    Hou, Dianzhi
    Fu, Yongxia
    Xue, Yong
    Guan, Xiao
    Shen, Qun
    NUTRIENTS, 2021, 13 (09)
  • [37] Suppression of High-Fat Diet-Induced Obesity by Platycodon Grandiflorus in Mice Is Linked to Changes in the Gut Microbiota
    Ke, Weixin
    Bonilla-Rosso, German
    Engel, Philipp
    Wang, Pan
    Chen, Fang
    Hu, Xiaosong
    JOURNAL OF NUTRITION, 2020, 150 (09): : 2364 - 2374
  • [38] Empagliflozin-induced gut microbiota alternation reduces obesity in high-fat diet-fed mice
    Shi, J.
    Qiu, H.
    Hou, N.
    Liu, Y.
    Han, F.
    Kan, C.
    Sun, X.
    DIABETOLOGIA, 2021, 64 (SUPPL 1) : 27 - 28
  • [39] Insoluble yeast β-glucan attenuates high-fat diet-induced obesity by regulating gut microbiota and its metabolites
    Mo, Xiaoxing
    Sun, Yunhong
    Liang, Xiaoling
    Li, Linyan
    Hu, Shan
    Xu, Zihui
    Liu, Shuang
    Zhang, Yan
    Li, Xiaoqin
    Liu, Liegang
    CARBOHYDRATE POLYMERS, 2022, 281
  • [40] Effects of exopolysaccharides form Lactobacillus plantarum KX041 on high fat diet-induced gut microbiota and inflammatory obesity
    Yue, Fangfang
    Han, Haoyue
    Xu, Jiaxin
    Yao, Xinyue
    Qin, Yanting
    Zhang, Libing
    Sun, Xin
    Huang, Jihong
    Zhang, Fan
    Lu, Xin
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2025, 289