Deterministic Behaviour of Short Time Series

被引:0
|
作者
Alessandra Celletti
Claude Froeschlé
Igor V. Tetko
Alessandro E.P. Villa
机构
[1] Universitá di L'Aquila,Dipt. di Matematica Pura e Applicata
[2] Observatoire de Nice,Department of Biomedical Applications, IBPC
[3] Academy of Sciences of Ukraine,Laboratoire de Neuro–heuristique, Institut de Physiologie
[4] Université de Lausanne,undefined
关键词
Chaos; Deterministic behaviour; Lyapunov exponents; Computational methods; Nonlinear dynamics.;
D O I
10.1023/A:1004668310653
中图分类号
学科分类号
摘要
We present a new method for detecting a low‐dimensional deterministic character of very short discrete time series. The algorithm depends on two parameters, that can be selected according to a simple criterion. Experiments show that the method is sensitive to noise levels as low as 2%. In addition, our technique allows us to estimate the value of the largest Lyapunov exponent.
引用
收藏
页码:145 / 152
页数:7
相关论文
共 50 条
  • [41] A generalized volterra series method for reconstructing deterministic dynamics from noisy chaotic time series
    Pei, WJ
    He, ZY
    Yang, LX
    Song, AG
    Hull, SS
    Cheung, JY
    APCCAS 2002: ASIA-PACIFIC CONFERENCE ON CIRCUITS AND SYSTEMS, VOL 2, PROCEEDINGS, 2002, : 491 - 494
  • [42] Detecting deterministic structure from a high noisy pseudoperiodic time series
    Pukenas, K.
    ELEKTRONIKA IR ELEKTROTECHNIKA, 2008, (04) : 75 - 80
  • [43] Improving time series modeling by decomposing and analyzing stochastic and deterministic influences
    Rios, Ricardo Araujo
    de Mello, Rodrigo Fernandes
    SIGNAL PROCESSING, 2013, 93 (11) : 3001 - 3013
  • [44] Comparison of Stabilization Ability of Models for Hydrological Time Series with a Deterministic Trend
    Xie, Huantian
    Xu, Min
    Li, Dingfang
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2015, 2015
  • [45] A FCM-based deterministic forecasting model for fuzzy time series
    Li, Sheng-Tun
    Cheng, Yi-Chung
    Lin, Su-Yu
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 56 (12) : 3052 - 3063
  • [46] Deterministic and stochastic trends in the time series models: a guide for the applied economist
    Rao, B. Bhaskara
    APPLIED ECONOMICS, 2010, 42 (17) : 2193 - 2202
  • [47] Stochastic vs. deterministic approaches of modelling hydrological time series
    Jayawardena, AW
    STOCHASTIC HYDRAULICS 2000, 2000, : 469 - 477
  • [48] Short time creep behaviour of Invar steel
    Myslowicki, T
    Crumbach, M
    Mattissen, D
    Bleck, W
    STEEL RESEARCH, 2002, 73 (08): : 332 - 339
  • [49] Recovering deterministic behavior from experimental time series in mixing reactor
    Letellier, C
    LeSceller, L
    Gouesbet, G
    Lusseyran, F
    Kemoun, A
    Izrar, B
    AICHE JOURNAL, 1997, 43 (09) : 2194 - 2202
  • [50] Time Series Prediction Using Deterministic Geometric Semantic Genetic Programming
    Hara, Akira
    Kushida, Jun-ichi
    Takahama, Tetsuyuki
    2019 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC), 2019, : 1945 - 1949