Pointwise convergence fails to be strict

被引:0
|
作者
Ján Borsík
Roman Frič
机构
[1] Matematický ústav SAV,
来源
Czechoslovak Mathematical Journal | 1998年 / 48卷
关键词
Differential Equation; Mathematical Modeling; Continuous Function; Ordinary Differential Equation; Industrial Mathematic;
D O I
暂无
中图分类号
学科分类号
摘要
It is known that the ring \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$B\left( \mathbb{R} \right)$$ \end{document} of all Baire functions carrying the pointwise convergence yields a sequential completion of the ring \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$C\left( \mathbb{R} \right)$$ \end{document} of all continuous functions. We investigate various sequential convergences related to the pointwise convergence and the process of completion of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$C\left( \mathbb{R} \right)$$ \end{document}. In particular, we prove that the pointwise convergence fails to be strict and prove the existence of the categorical ring completion of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$C\left( \mathbb{R} \right)$$ \end{document} which differs from \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$B\left( \mathbb{R} \right)$$ \end{document}.
引用
收藏
页码:313 / 320
页数:7
相关论文
共 50 条
  • [41] ON POINTWISE CONVERGENCE OF SINGULAR-INTEGRALS
    HARBOURE, E
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1983, 32 (02) : 159 - 164
  • [42] NOTES ON POINTWISE CONVERGENCE OF CLOSED MARTINGALES
    RAO, MM
    PROCEEDINGS OF THE KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETENSCHAPPEN SERIES A-MATHEMATICAL SCIENCES, 1967, 70 (02): : 170 - &
  • [43] Pointwise and Uniform Convergence of Fourier Extensions
    Marcus Webb
    Vincent Coppé
    Daan Huybrechs
    Constructive Approximation, 2020, 52 : 139 - 175
  • [44] POINTWISE CONVERGENCE FOR EXPANSIONS IN SPHERICAL MONOGENICS
    费铭岗
    钱涛
    Acta Mathematica Scientia, 2009, 29 (05) : 1241 - 1250
  • [45] POINTWISE CONVERGENCE FOR EXPANSIONS IN SPHERICAL MONOGENICS
    Fei Minggang
    Qian Tao
    ACTA MATHEMATICA SCIENTIA, 2009, 29 (05) : 1241 - 1250
  • [46] Pointwise and Uniform Convergence of Fourier Extensions
    Webb, Marcus
    Coppe, Vincent
    Huybrechs, Daan
    CONSTRUCTIVE APPROXIMATION, 2020, 52 (01) : 139 - 175
  • [47] Pointwise Dynamics Under Orbital Convergence
    Abdul Gaffar Khan
    Pramod Kumar Das
    Tarun Das
    Bulletin of the Brazilian Mathematical Society, New Series, 2020, 51 : 1001 - 1016
  • [48] POINTWISE CONVERGENCE OF FINITE-ELEMENTS
    NATTERER, F
    NUMERISCHE MATHEMATIK, 1975, 25 (01) : 67 - 77
  • [49] Pointwise convergence of multiple trigonometric series
    Chang-Pao, Chen
    Hui-Chuan, Wu
    Moricz, Ferenc
    Inverse Problems, 1994, 10 (04)
  • [50] On uniform pointwise convergence on a sets base
    Arkhipov, GI
    Sadovnichii, VA
    Chubarikov, VN
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1997, (01): : 70 - 72