Morton filters: fast, compressed sparse cuckoo filters

被引:0
|
作者
Alex D. Breslow
Nuwan S. Jayasena
机构
[1] AMD Research,Advanced Micro Devices, Inc.
来源
The VLDB Journal | 2020年 / 29卷
关键词
Morton filter; Cuckoo filter; Hardware cache and memory bandwidth optimized data structures and algorithms; Approximate set membership data structure; Approximate membership query data structure; Rank-and-select;
D O I
暂无
中图分类号
学科分类号
摘要
Approximate set membership data structures (ASMDSs) are ubiquitous in computing. They trade a tunable, often small, error rate (ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document}) for large space savings. The canonical ASMDS is the Bloom filter, which supports lookups and insertions but not deletions in its simplest form. Cuckoo filters (CFs), a recently proposed class of ASMDSs, add deletion support and often use fewer bits per item for equal ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document}. This work introduces the Morton filter (MF), a novel CF variant that introduces several key improvements to its progenitor. Like CFs, MFs support lookups, insertions, and deletions, and when using an optional batching interface raise their respective throughputs by up to 2.5×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document}, 20.8×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document}, and 1.3×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document}. MFs achieve these improvements by (1) introducing a compressed block format that permits storing a logically sparse filter compactly in memory, (2) leveraging succinct embedded metadata to prune unnecessary memory accesses, and (3) more heavily biasing insertions to use a single hash function. With these optimizations, lookups, insertions, and deletions often only require accessing a single hardware cache line from the filter. MFs and CFs are then extended to support self-resizing, a feature of quotient filters (another ASMDS that uses fingerprints). MFs self-resize up to 13.9×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\times $$\end{document} faster than rank-and-select quotient filters (a state-of-the-art self-resizing filter). These improvements are not at a loss in space efficiency, as MFs typically use comparable to slightly less space than CFs for equal ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document}.
引用
收藏
页码:731 / 754
页数:23
相关论文
共 50 条
  • [21] On the Privacy of Adaptive Cuckoo Filters: Analysis and Protection
    Reviriego, Pedro
    Apple, Jim
    Larrabeiti, David
    Liu, Shanshan
    Lombardi, Fabrizio
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2024, 19 : 5867 - 5879
  • [22] Vacuum Filters: More Space-Efficient and Faster Replacement for Bloom and Cuckoo Filters
    Wang, Minmei
    Zhou, Mingxun
    Shi, Shouqian
    Qian, Chen
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2019, 13 (02): : 197 - 210
  • [23] A Review of Cuckoo Filters for Privacy Protection and Their Applications
    Zhao, Yekang
    Dai, Wangchen
    Wang, Shiren
    Xi, Liang
    Wang, Shenqing
    Zhang, Feng
    ELECTRONICS, 2023, 12 (13)
  • [24] Digital Filters with Sparse Coefficients
    Lu, Wu-Sheng
    Hinamoto, Takao
    2010 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, 2010, : 169 - 172
  • [25] Beamformer Design with Sparse Filters
    Gao, Ming Jie
    Yiu, Ka Fai Cedric
    2015 IEEE INTERNATIONAL CONFERENCE ON DIGITAL SIGNAL PROCESSING (DSP), 2015, : 1135 - 1137
  • [26] GREEDY RLS FOR SPARSE FILTERS
    Dumitrescu, Bogdan
    Tabus, Ioan
    18TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO-2010), 2010, : 1484 - 1488
  • [27] Compressed air filters for higher efficiency
    不详
    FILTRATION + SEPARATION, 2008, 45 (05) : 11 - 11
  • [28] Compressed Sensing using Chaos Filters
    Linh-Trung, Nguyen
    Van Phong, Dinh
    Hussain, Zahir M.
    Huynh, Huu Tue
    Morgan, Victoria L.
    Gore, John C.
    ATNAC: 2008 AUSTRALASIAN TELECOMMUNICATION NETWOKS AND APPLICATIONS CONFERENCE, 2008, : 219 - +
  • [29] Analysis of compressed distributed adaptive filters
    Xie, Siyu
    Guo, Lei
    AUTOMATICA, 2020, 112
  • [30] Advanced compressed air filters for dairies
    Davis, John
    FOOD AUSTRALIA, 2008, 60 (04): : 127 - 127