Spectrum Monitoring Based on End-to-End Learning by Deep Learning

被引:0
|
作者
Mahdiyeh Rahmani
Reza Ghazizadeh
机构
[1] Birjand University,Department of Telecommunication Engineering, Faculty of Electrical and Computer Engineering
关键词
Machine learning; Spectrum monitoring; Modulation recognition; Wireless technology; Deep learning;
D O I
暂无
中图分类号
学科分类号
摘要
Numerous autonomous wireless deployments have become invaluable for understanding and investigating the radio frequency environment. However, machine learning techniques have their drawbacks and there are situations where such strategies are unreliable. The purpose of the present paper is to present an end-to-end learning framework based on deep learning (DL) and to evaluate different methods of wireless signal classifiers implementation and signal representation for spectrum monitoring. Furthermore, we tend to investigate the significance of wireless data representation selection for varied spectrum monitoring tasks. For each case study, modulation recognition (MR) and wireless interference identification (IId), three deep learning networks are evaluated for the subsequent wireless signal representations, temporal I/Q data, the amplitude/phase, frequency domain and Hilbert and wavelet transform representations. From our analysis, the accuracy of wireless signal identification is proved to be affected by the network classifier and wireless data representation. For different signal-to-noise ratio values, the classification accuracy of the three DL networks are evaluated. The results of the experiments indicate that the representation of data influences network accuracy. In MR case, in high SNR (18), the first, second and third networks have the best results in the db3 mother wavelet, amplitude/phase and Hilbert samples, respectively. In the medium and low SNR (0, − 8) in all three networks, almost the best results is obtained from Hilbert data representation with the accuracy variation up to 4%. In IId case, for three SNR (− 8, 0, 18) in the three presented networks almost the best results is obtained from the FFT and wavelet data representations with 0.5% accuracy variations.
引用
收藏
页码:180 / 192
页数:12
相关论文
共 50 条
  • [41] End-to-End Deep Learning of Optical Fiber Communications
    Karanov, Boris
    Chagnon, Mathieu
    Thouin, Felix
    Eriksson, Tobias A.
    Buelow, Henning
    Lavery, Domanic
    Bayvel, Polina
    Schmalen, Laurent
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2018, 36 (20) : 4843 - 4855
  • [42] End-to-End Learning for the Deep Multivariate Probit Model
    Chen, Di
    Xue, Yexiang
    Gomes, Carla
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 80, 2018, 80
  • [43] Satellite selection with an end-to-end deep learning network
    Huang, Panpan
    Rizos, Chris
    Roberts, Craig
    GPS SOLUTIONS, 2018, 22 (04)
  • [44] Automated Classification Using End-to-End Deep Learning
    Jaipurkar, Shobhit Sandeep
    Jie, Wang
    Zeng, Zeng
    Gee, Teo Sin
    Veeravalli, Bharadwaj
    Chua, Matthew
    2018 40TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2018, : 706 - 709
  • [45] NeuroVectorizer: End-to-End Vectorization with Deep Reinforcement Learning
    Haj-Ali, Ameer
    Ahmed, Nesreen K.
    Willke, Ted
    Shao, Yakun Sophia
    Asanovic, Krste
    Stoica, Ion
    CGO'20: PROCEEDINGS OF THE18TH ACM/IEEE INTERNATIONAL SYMPOSIUM ON CODE GENERATION AND OPTIMIZATION, 2020, : 242 - 255
  • [46] End-to-End Deep Reinforcement Learning for Exoskeleton Control
    Rose, Lowell
    Bazzocchi, Michael C. F.
    Nejat, Goldie
    2020 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2020, : 4294 - 4301
  • [47] An End-to-End Deep Learning System for Hop Classification
    Castro, Pedro
    Moreira, Gladston
    Luz, Eduardo
    IEEE LATIN AMERICA TRANSACTIONS, 2022, 20 (03) : 430 - 442
  • [48] End-to-End Race Driving with Deep Reinforcement Learning
    Jaritz, Maximilian
    de Charette, Raoul
    Toromanoff, Marin
    Perot, Etienne
    Nashashibi, Fawzi
    2018 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2018, : 2070 - 2075
  • [49] End-to-End Deep Reinforcement Learning for Conversation Disentanglement
    Bhukar, Karan
    Kumar, Harshit
    Raghu, Dinesh
    Gupta, Ajay
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 11, 2023, : 12571 - 12579
  • [50] NetGraf: An End-to-End Learning Network Monitoring Service
    Mohammed, Bashir
    Kiran, Mariam
    Enders, Bjoern
    PROCEEDINGS OF 8TH WORKSHOP ON INNOVATING THE NETWORK FOR DATA-INTENSIVE SCIENCE (INDIS 2021), 2021, : 12 - 22