Realization of a polylinear controller as a second-order differential system in a Hilbert space

被引:0
|
作者
A. V. Lakeyev
Yu. E. Linke
V. A. Rusanov
机构
[1] Siberian Branch of the Russian Academy of Sciences,Matrosov Institute for System Dynamics and Control Theory
[2] Irkutsk National Research Technical University,undefined
来源
Differential Equations | 2017年 / 53卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We study the solvability of the inverse nonlinear system analysis problem viewed as qualitative solvability (necessary and sufficient conditions) of a realization of a time-varying polylinear controller as a second-order differential system whose admissible solutions include a given nonlinear pencil of arbitrary (finite, countable, or continual) cardinality of dynamic processes in a separable Hilbert space.
引用
收藏
页码:1070 / 1081
页数:11
相关论文
共 50 条
  • [11] Estimates of solutions of certain classes of second-order differential equations in a Hilbert space
    Artamonov, NV
    SBORNIK MATHEMATICS, 2003, 194 (7-8) : 1113 - 1123
  • [12] Adjustment Optimization for a Model of Differential Realization of a Multidimensional Second-Order System
    Rusanov, V. A.
    Daneev, A., V
    Linke, Yu E.
    DIFFERENTIAL EQUATIONS, 2019, 55 (10) : 1390 - 1396
  • [13] Adjustment Optimization for a Model of Differential Realization of a Multidimensional Second-Order System
    V. A. Rusanov
    A. V. Daneev
    Yu. E. Linke
    Differential Equations, 2019, 55 : 1390 - 1396
  • [14] DIFFERENTIAL REALIZATION OF SECOND-ORDER BILINEAR SYSTEM: A FUNCTIONAL-GEOMETRIC APPROACH
    Rusanov, V. A.
    Daneev, R. A.
    Lakeyev, A. V.
    Linke, Yu. E.
    ADVANCES IN DIFFERENTIAL EQUATIONS AND CONTROL PROCESSES, 2018, 19 (03): : 303 - 321
  • [15] NONLINEAR SECOND ORDER DIFFERENTIAL EQUATIONS IN HILBERT SPACE
    JONES, J
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1970, 17 (01): : 221 - &
  • [16] SECOND-ORDER DIFFERENTIAL EQUATIONS IN BANACH SPACE
    SOBOLEVSKII, PE
    DOKLADY AKADEMII NAUK SSSR, 1962, 146 (04): : 774 - &
  • [17] CAUCHY PROBLEM FOR A CLASS OF NON-LINEAR SECOND-ORDER DIFFERENTIAL EQUATIONS IN HILBERT SPACE
    ENIKEEVA, TK
    DOKLADY AKADEMII NAUK SSSR, 1968, 182 (06): : 1264 - &
  • [18] Periodic Solutions of Second-Order Differential Equations in Hilbert Spaces
    Alessandro Fonda
    Giuliano Klun
    Andrea Sfecci
    Mediterranean Journal of Mathematics, 2021, 18
  • [19] Periodic Solutions of Second-Order Differential Equations in Hilbert Spaces
    Fonda, Alessandro
    Klun, Giuliano
    Sfecci, Andrea
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2021, 18 (05)
  • [20] BOUNDARY-VALUE PROBLEMS FOR A SECOND-ORDER DIFFERENTIAL EQUATION OF HYPERBOLIC TYPE IN HILBERT-SPACE
    VAINERMAN, LI
    GORBACHUK, ML
    DOKLADY AKADEMII NAUK SSSR, 1975, 221 (04): : 763 - 766