System Theory;
Stability Result;
Type Equation;
Small Data;
Obstacle Problem;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
We extend some convergence and L1 stability results for the coincidence set to the p-obstacle problem under natural nondegeneracy conditions and without restrictions on p, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$1\! < \!p\! < \!\infty$\end{document}. We rely on the local \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$C^{1,\lambda}$\end{document} regularity of the solution and, as an application, we show the existence of a solution to the thermal membrane problem, and in a limit nonlocal case also its uniqueness for small data.
机构:
RUDN Univ, Moscow 117198, RussiaRUDN Univ, Moscow 117198, Russia
Apushkinskaya, D. E.
Novikova, A. A.
论文数: 0引用数: 0
h-index: 0
机构:
RUDN Univ, Moscow 117198, RussiaRUDN Univ, Moscow 117198, Russia
Novikova, A. A.
Repin, S. I.
论文数: 0引用数: 0
h-index: 0
机构:
RUDN Univ, Moscow 117198, Russia
Russian Acad Sci, St Petersburg Branch, Steklov Math Inst, St Petersburg 191023, RussiaRUDN Univ, Moscow 117198, Russia