Riesz Bases in Subspaces of L2 (R+ )

被引:0
|
作者
T. N. T. Goodman
C. A. Micchelli
Z. Shen
机构
[1] Department of Mathematics University of Dundee Dundee DD1 4HN Scotland tgoodman@mcs.dundee.ac.uk,
[2] Department of Mathematics and Statistics State University of New York The University of Albany Albany,undefined
[3] NY 12222 USA cam@watson.ibm.com,undefined
[4] Department of Mathematics The National University of Singapore 10 Kent Ridge Crescent Singapore 119260 matzuows@leonis.nus.edu.sg http://www.math.nus.edu.sg/~matzuows,undefined
来源
关键词
Key words. Riesz basis, Gaussian functions, Nonnegative translates, Gram—Schmidt orthonormalization. AMS Classification. Primary 46E20; Secondary 42C05.;
D O I
暂无
中图分类号
学科分类号
摘要
In a recent investigation [8] concerning the asymptotic behavior of Gram—Schmidt orthonormalization procedure applied to the nonnegative integer shifts of a given function, the problem of determining whether or not such functions form a Riesz system in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $L_2$({\bf R}$_+)$ \end{document} arose. In this paper, we provide a sufficient condition to determine whether the nonnegative translates form a Riesz system on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $L_2$({\bf R}$_+)$ \end{document} . This result is applied to identify a large class of functions for which very general translates enjoy the Riesz basis property in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $L_2$({\bf R}$_+)$ \end{document} .
引用
收藏
页码:39 / 46
页数:7
相关论文
共 50 条
  • [31] Unconditional decompositions in subspaces of l2(X)
    Anisca, R
    POSITIVITY, 2004, 8 (04) : 423 - 441
  • [32] Frame wavelets in subspaces of L2(Rd)
    Dai, X
    Diao, Y
    Gu, Q
    Han, D
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 130 (11) : 3259 - 3267
  • [33] Conjugations on L2(TN) and Invariant Subspaces
    Dymek, Piotr
    Planeta, Artur
    Ptak, Marek
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2022, 16 (07)
  • [34] COMPLEMENTED SUBSPACES OF (SIGMA L2)LP
    ODELL, E
    ISRAEL JOURNAL OF MATHEMATICS, 1976, 23 (3-4) : 353 - 367
  • [35] SUBSPACES AND QUOTIENTS OF LP AND L2 AND XP
    JOHNSON, WB
    ODELL, E
    ACTA MATHEMATICA, 1981, 147 (1-2) : 117 - 147
  • [36] Unconditional Decompositions in Subspaces of l2(X)
    Razvan Anisca
    Positivity, 2004, 8 : 423 - 441
  • [37] FRAMES AND STABLE BASES FOR SHIFT-INVARIANT SUBSPACES OF L(2)(R(D))
    RON, A
    SHEN, ZW
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1995, 47 (05): : 1051 - 1094
  • [38] Riesz bases in L2(0,1) related to sampling in shift-invariant spaces
    García, AG
    Pérez-Villalón, G
    Portal, A
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 308 (02) : 703 - 713
  • [39] RISSES BASES IN L2 )0.1)
    MIKHAILOV, VP
    DOKLADY AKADEMII NAUK SSSR, 1962, 144 (05): : 981 - &
  • [40] ON WILSON BASES IN L2(Rd)
    Bownik, Marcin
    Jakobsen, Mads S.
    Lemvig, Jakob
    Okoudjoul, Kasso A.
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2017, 49 (05) : 3999 - 4023