Effect of cations in ionic liquids on the electrochemical performance of lithium-sulfur batteries

被引:0
|
作者
Yang Yan
YaXia Yin
YuGuo Guo
Li-Jun Wan
机构
[1] Chinese Academy of Sciences (CAS),Beijing National Laboratory for Molecular Science; Institute of Chemistry
来源
Science China Chemistry | 2014年 / 57卷
关键词
lithium-sulfur batteries; electrolyte; P13TFSI; PMIMTFSI; polysulfides;
D O I
暂无
中图分类号
学科分类号
摘要
Lithium-sulfur (Li-S) battery is a promising choice for the next generation of high-energy rechargeable batteries, but its application is impeded by the high dissolution of the polysulfides in commonly used organic electrolyte. Room temperature ionic liquids (RTILs) have been considered as appealing candidates for the electrolytes in Li-S batteries. We investigated the effect of cations in RTILs on the electrochemical performance for Li-S batteries. Ex situ investigation of lithium anode for Li-S batteries indicates that during the discharge/charge process the RTIL with N-methyl-N-propylpyrrolidine cations (P13) can effectively suppress the dissolution of the polysulfides, whereas the RTIL with 1-methyl-3-propyl imidazolium cation (PMIM) barely alleviates the shuttling problem. With 0.5 mol L−1 LiTFSI/P13TFSI as the electrolyte of Li-S battery, the ketjen black/sulfur cathode material exhibits high capacity and remarkable cycling stability, which promise the application of the P13-based RTILs in Li-S batteries.
引用
收藏
页码:1564 / 1569
页数:5
相关论文
共 50 条
  • [21] Enhanced Electrochemical Performance of Lithium-Sulfur Batteries with Surface Copolymerization of Cathode
    Zhang, Jun
    Huang, Hui
    Xia, Yang
    Liang, Chu
    Gan, Yongping
    Tao, Xinyong
    Zhang, Wenkui
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2019, 166 (03) : A5349 - A5353
  • [22] Impact of composite preparation method on the electrochemical performance of lithium-sulfur batteries
    Bonilla, Alvaro
    Benitez, Almudena
    Gomez-Camer, Juan Luis
    Caballero, Alvaro
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 968
  • [23] Synthesis and electrochemical performance of sulfur-carbon composite cathode for lithium-sulfur batteries
    Li, Lan
    Li, Long-Yan
    Guo, Xiao-Dong
    Zhong, Ben-He
    Chen, Yan-Xiao
    Tang, Yan
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2013, 17 (01) : 115 - 119
  • [24] Mesoporous hollow carbon spheres for lithium-sulfur batteries: distribution of sulfur and electrochemical performance
    Juhl, Anika C.
    Schneider, Artur
    Ufer, Boris
    Brezesinski, Torsten
    Janek, Juergen
    Froeba, Michael
    BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 2016, 7 : 1229 - 1240
  • [25] Preparation and Electrochemical Performance of Sulfur/ Mesoporous Carbon Composites as Cathodes for Lithium-Sulfur Batteries
    Xu Jing-Jing
    Li Bin
    Li Song-Mei
    Liu Jian-Hua
    Yu Mei
    CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2015, 31 (10) : 2030 - 2036
  • [26] Impact of Compression on the Electrochemical Performance of the Sulfur/Carbon Composite Electrode in Lithium-Sulfur Batteries
    Chien, Yu-Chuan
    Li, He
    Lampkin, John
    Hall, Stephen
    Garcia-Araez, Nuria
    Brant, William R.
    Brandell, Daniel
    Lacey, Matthew J.
    BATTERIES & SUPERCAPS, 2022, 5 (07)
  • [27] Preparation and electrochemical performance of sulfur-alumina cathode material for lithium-sulfur batteries
    Dong, Kang
    Wang, Shengping
    Zhang, Hanyu
    Wu, Jinping
    MATERIALS RESEARCH BULLETIN, 2013, 48 (06) : 2079 - 2083
  • [28] The effect of cerium oxide addition on the electrochemical properties of lithium-sulfur batteries
    Li, Yadong
    Wang, Qin
    Zheng, Daoguang
    Li, Weiping
    Wang, Jianxin
    JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 787 : 982 - 989
  • [29] Understanding the Effect of a Fluorinated Ether on the Performance of Lithium-Sulfur Batteries
    Azimi, Nasim
    Xue, Zheng
    Bloom, Ira
    Gordin, Mikhail L.
    Wang, Donghai
    Daniel, Tad
    Takoudis, Christos
    Zhang, Zhengcheng
    ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (17) : 9169 - 9177
  • [30] Effect of Electrolyte Composition on Performance and Stability of Lithium-Sulfur Batteries
    Ishino, Yuki
    Takahashi, Keitaro
    Murata, Wataru
    Umebayashi, Yasuhiro
    Tsuzuki, Seiji
    Watanabe, Masayoshi
    Kamaya, Minori
    Seki, Shiro
    ENERGY TECHNOLOGY, 2019, 7 (12)