On CMC free-boundary stable hypersurfaces in a Euclidean ball

被引:0
|
作者
Ezequiel Barbosa
机构
[1] Universidade Federal de Minas Gerais (UFMG),Departamento de Matemática
来源
Mathematische Annalen | 2018年 / 372卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In this note, we prove that if B is the unit ball centred in the origin in the Euclidean space with dimension n+1,n≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n+1, n\ge 2$$\end{document}, then a CMC free-boundary stable hypersurface Σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Sigma $$\end{document} in B satisfies InH22∫Σ(1-|x|2)dvolΣ+nA≤L≤nA1+H,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \frac{nH^2}{2}\int _{\Sigma }(1-|x|^2){ dvol}_{\Sigma }+nA\le L\le nA\left( 1+H \right) , \end{aligned}$$\end{document}where L, A and H denote the length of ∂Σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial \Sigma $$\end{document}, the area of Σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Sigma $$\end{document} and the mean curvature of Σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Sigma $$\end{document}, respectively, and the orientation of Σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Sigma $$\end{document} is in a such way that H≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H\ge 0$$\end{document}. The left side of (I) is an equality if, and only if, Σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Sigma $$\end{document} is a totally geodesic disk or a spherical cap. Consequently, if the boundary ∂Σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial \Sigma $$\end{document} of Σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Sigma $$\end{document} is embedded then Σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Sigma $$\end{document} must be either totally geodesic or starshaped with respect to the center of the ball. This result is a slightly improvement of a theorem proved by Ros and Vergasta. In particular, if n=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=2$$\end{document} (in this case its not necessary to assume the boundary ∂Σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial \Sigma $$\end{document} is embedded), the only CMC free-boundary stable surfaces in B are the totally geodesic disks or the spherical caps. This classification result was proved very recently by Nunes using an extended stability result and a modified Hersch type balancing argument to get a better control on the genus and on the number of connected components of the boundary of the surfaces. We don’t use that modified Hersch type argument. However, we use a Nunes stability type lemma and a crucial result due to Ros and Vergasta.Our technique, considering a Nunes stability type lemma, can be applied to study sets which are stable for the volume-constrained least area problem within the unit ball, and provide a proof for the Sternberg–Zumbrun’s conjecture.
引用
收藏
页码:179 / 187
页数:8
相关论文
共 50 条
  • [21] Curvature estimates for stable free boundary minimal hypersurfaces
    Guang, Qiang
    Li, Martin Man-chun
    Zhou, Xin
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2020, 759 : 245 - 264
  • [22] Curvature estimates for stable free boundary minimal hypersurfaces
    Guang, Qiang
    Li, Martin Man-chun
    Zhou, Xin
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2020, 2020 (759): : 245 - 264
  • [23] ALEXANDROV-FENCHEL INEQUALITIES FOR CONVEX HYPERSURFACES WITH FREE BOUNDARY IN A BALL
    Scheuer, Julian
    Wang, Guofang
    Xia, Chao
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2022, 120 (02) : 345 - 373
  • [24] ON A FREE-BOUNDARY PROBLEM
    BOUGUIMA, SM
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1993, 317 (10): : 941 - 943
  • [25] A FREE-BOUNDARY PROBLEM
    ROSSI, AM
    SAMBUCETI, P
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1985, 4C (01): : 1 - 30
  • [26] Free boundary stable hypersurfaces in manifolds with density and rigidity results
    Castro, Katherine
    Rosales, Cesar
    JOURNAL OF GEOMETRY AND PHYSICS, 2014, 79 : 14 - 28
  • [27] ELECTROPHORETIC INTERACTION STUDIES BY THE STABLE-FLOW FREE-BOUNDARY METHOD
    MEL, HC
    SCIENCE, 1960, 132 (3435) : 1255 - 1256
  • [28] Uniqueness of stable capillary hypersurfaces in a ball
    Wang, Guofang
    Xia, Chao
    MATHEMATISCHE ANNALEN, 2019, 374 (3-4) : 1845 - 1882
  • [29] Uniqueness of stable capillary hypersurfaces in a ball
    Guofang Wang
    Chao Xia
    Mathematische Annalen, 2019, 374 : 1845 - 1882
  • [30] FREE-BOUNDARY HIGH-BETA TOKAMAKS .1. FREE-BOUNDARY EQUILIBRIUM
    GOEDBLOED, JP
    PHYSICS OF FLUIDS, 1982, 25 (05) : 852 - 868