On CMC free-boundary stable hypersurfaces in a Euclidean ball

被引:0
|
作者
Ezequiel Barbosa
机构
[1] Universidade Federal de Minas Gerais (UFMG),Departamento de Matemática
来源
Mathematische Annalen | 2018年 / 372卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In this note, we prove that if B is the unit ball centred in the origin in the Euclidean space with dimension n+1,n≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n+1, n\ge 2$$\end{document}, then a CMC free-boundary stable hypersurface Σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Sigma $$\end{document} in B satisfies InH22∫Σ(1-|x|2)dvolΣ+nA≤L≤nA1+H,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \frac{nH^2}{2}\int _{\Sigma }(1-|x|^2){ dvol}_{\Sigma }+nA\le L\le nA\left( 1+H \right) , \end{aligned}$$\end{document}where L, A and H denote the length of ∂Σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial \Sigma $$\end{document}, the area of Σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Sigma $$\end{document} and the mean curvature of Σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Sigma $$\end{document}, respectively, and the orientation of Σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Sigma $$\end{document} is in a such way that H≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H\ge 0$$\end{document}. The left side of (I) is an equality if, and only if, Σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Sigma $$\end{document} is a totally geodesic disk or a spherical cap. Consequently, if the boundary ∂Σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial \Sigma $$\end{document} of Σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Sigma $$\end{document} is embedded then Σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Sigma $$\end{document} must be either totally geodesic or starshaped with respect to the center of the ball. This result is a slightly improvement of a theorem proved by Ros and Vergasta. In particular, if n=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=2$$\end{document} (in this case its not necessary to assume the boundary ∂Σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial \Sigma $$\end{document} is embedded), the only CMC free-boundary stable surfaces in B are the totally geodesic disks or the spherical caps. This classification result was proved very recently by Nunes using an extended stability result and a modified Hersch type balancing argument to get a better control on the genus and on the number of connected components of the boundary of the surfaces. We don’t use that modified Hersch type argument. However, we use a Nunes stability type lemma and a crucial result due to Ros and Vergasta.Our technique, considering a Nunes stability type lemma, can be applied to study sets which are stable for the volume-constrained least area problem within the unit ball, and provide a proof for the Sternberg–Zumbrun’s conjecture.
引用
收藏
页码:179 / 187
页数:8
相关论文
共 50 条
  • [1] On CMC free-boundary stable hypersurfaces in a Euclidean ball
    Barbosa, Ezequiel
    MATHEMATISCHE ANNALEN, 2018, 372 (1-2) : 179 - 187
  • [2] On the Morse index of free-boundary CMC hypersurfaces in the upper hemisphere
    de Oliveira, Crísia
    arXiv,
  • [3] Deformations of Free Boundary CMC Hypersurfaces
    Bettiol, Renato G.
    Piccione, Paolo
    Santoro, Bianca
    JOURNAL OF GEOMETRIC ANALYSIS, 2017, 27 (04) : 3254 - 3284
  • [4] Deformations of Free Boundary CMC Hypersurfaces
    Renato G. Bettiol
    Paolo Piccione
    Bianca Santoro
    The Journal of Geometric Analysis, 2017, 27 : 3254 - 3284
  • [5] Minimal hypersurfaces in the ball with free boundary
    Wheeler, Glen
    Wheeler, Valentina-Mira
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2019, 62 : 120 - 127
  • [6] Geometric inequalities for free boundary hypersurfaces in a ball
    Chen, Yimin
    Hu, Yingxiang
    Li, Haizhong
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2022, 62 (01) : 33 - 45
  • [7] Rigidity of minimal hypersurfaces with free boundary in a ball
    Sangwoo Park
    Juncheol Pyo
    Geometriae Dedicata, 2022, 216
  • [8] Rigidity of minimal hypersurfaces with free boundary in a ball
    Park, Sangwoo
    Pyo, Juncheol
    GEOMETRIAE DEDICATA, 2022, 216 (03)
  • [9] Geometric inequalities for free boundary hypersurfaces in a ball
    Yimin Chen
    Yingxiang Hu
    Haizhong Li
    Annals of Global Analysis and Geometry, 2022, 62 : 33 - 45
  • [10] Free boundary minimal hypersurfaces outside of the ball
    Mazet, Laurent
    Mendes, Abraao
    REVISTA MATEMATICA IBEROAMERICANA, 2024, 40 (01) : 277 - 298