Wave Equation for Operators with Discrete Spectrum and Irregular Propagation Speed

被引:0
|
作者
Michael Ruzhansky
Niyaz Tokmagambetov
机构
[1] Imperial College London,Department of Mathematics
[2] al–Farabi Kazakh National University,undefined
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Given a Hilbert space H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{H}}$$\end{document}, we investigate the well-posedness of the Cauchy problem for the wave equation for operators with a discrete non-negative spectrum acting on H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{H}}$$\end{document}. We consider the cases when the time-dependent propagation speed is regular, Hölder, and distributional. We also consider cases when it is strictly positive (strictly hyperbolic case) and when it is non-negative (weakly hyperbolic case). When the propagation speed is a distribution, we introduce the notion of “very weak solutions” to the Cauchy problem. We show that the Cauchy problem for the wave equation with the distributional coefficient has a unique “very weak solution” in an appropriate sense, which coincides with classical or distributional solutions when the latter exist. Examples include the harmonic and anharmonic oscillators, the Landau Hamiltonian on Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^n}$$\end{document}, uniformly elliptic operators of different orders on domains, Hörmander’s sums of squares on compact Lie groups and compact manifolds, operators on manifolds with boundary, and many others.
引用
收藏
页码:1161 / 1207
页数:46
相关论文
共 50 条
  • [41] Parallel irregular software for wave propagation simulation
    Guidec, F
    Calegari, P
    Kuonen, P
    FUTURE GENERATION COMPUTER SYSTEMS, 1998, 13 (4-5) : 279 - 289
  • [42] An irregular lattice method for elastic wave propagation
    O'Brien, Gareth S.
    Bean, Christopher J.
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2011, 187 (03) : 1699 - 1707
  • [43] On the energy estimates of semi-discrete wave equations with time dependent propagation speed
    Hirosawa, Fumihiko
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 496 (01)
  • [45] Wave Propagation Speed on Fractals
    Ngai, Sze-Man
    Tang, Wei
    Xie, Yuanyuan
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2020, 26 (02)
  • [46] Wave Propagation Speed on Fractals
    Sze-Man Ngai
    Wei Tang
    Yuanyuan Xie
    Journal of Fourier Analysis and Applications, 2020, 26
  • [47] PROPAGATION FAILURE IN THE DISCRETE NAGUMO EQUATION
    Hupkes, H. J.
    Pelinovsky, D.
    Sandstede, B.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 139 (10) : 3537 - 3551
  • [48] Discrete Bessel Functions and Discrete Wave Equation
    Basic, Amar
    Smajlovic, Lejla
    Sabanac, Zenan
    RESULTS IN MATHEMATICS, 2024, 79 (05)
  • [49] Analysis of the Effects of Irregular Terrain on Radio Wave Propagation Based on a Three-Dimensional Parabolic Equation
    Silva, Marco A. N.
    Costa, Emanoel
    Liniger, Markus
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2012, 60 (04) : 2138 - 2143
  • [50] On a discrete version of the wave equation
    Gselmann, Eszter
    AEQUATIONES MATHEMATICAE, 2015, 89 (01) : 63 - 70