Wave Equation for Operators with Discrete Spectrum and Irregular Propagation Speed

被引:0
|
作者
Michael Ruzhansky
Niyaz Tokmagambetov
机构
[1] Imperial College London,Department of Mathematics
[2] al–Farabi Kazakh National University,undefined
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Given a Hilbert space H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{H}}$$\end{document}, we investigate the well-posedness of the Cauchy problem for the wave equation for operators with a discrete non-negative spectrum acting on H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{H}}$$\end{document}. We consider the cases when the time-dependent propagation speed is regular, Hölder, and distributional. We also consider cases when it is strictly positive (strictly hyperbolic case) and when it is non-negative (weakly hyperbolic case). When the propagation speed is a distribution, we introduce the notion of “very weak solutions” to the Cauchy problem. We show that the Cauchy problem for the wave equation with the distributional coefficient has a unique “very weak solution” in an appropriate sense, which coincides with classical or distributional solutions when the latter exist. Examples include the harmonic and anharmonic oscillators, the Landau Hamiltonian on Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^n}$$\end{document}, uniformly elliptic operators of different orders on domains, Hörmander’s sums of squares on compact Lie groups and compact manifolds, operators on manifolds with boundary, and many others.
引用
收藏
页码:1161 / 1207
页数:46
相关论文
共 50 条