Simple endotrivial modules for linear, unitary and exceptional groups

被引:0
|
作者
Caroline Lassueur
Gunter Malle
机构
[1] FB Mathematik,
[2] TU Kaiserslautern,undefined
来源
Mathematische Zeitschrift | 2015年 / 280卷
关键词
Simple endotrivial modules; Quasi-simple groups; Special linear and unitary groups; Loewy length; Zeroes of characters; Primary 20C20; Secondary 20C30; 20C33; 20C34;
D O I
暂无
中图分类号
学科分类号
摘要
Motivated by a recent result of Robinson showing that simple endotrivial modules essentially come from quasi-simple groups we classify such modules for finite special linear and unitary groups as well as for exceptional groups of Lie type. Our main tool is a lifting result for endotrivial modules obtained in a previous paper which allows us to apply character theoretic methods. As one application we prove that the ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document}-rank of quasi-simple groups possessing a faithful simple endotrivial module is at most 2. As a second application we complete the proof that principal blocks of finite simple groups cannot have Loewy length 4, thus answering a question of Koshitani, Külshammer and Sambale. Our results also imply a vanishing result for irreducible characters of special linear and unitary groups.
引用
收藏
页码:1047 / 1074
页数:27
相关论文
共 50 条
  • [21] Endotrivial modules for finite groups of Lie type A in nondefining characteristic
    Carlson, Jon F.
    Mazza, Nadia
    Nakano, Daniel K.
    MATHEMATISCHE ZEITSCHRIFT, 2016, 282 (1-2) : 1 - 24
  • [22] Endotrivial modules for finite groups of Lie type A in nondefining characteristic
    Jon F. Carlson
    Nadia Mazza
    Daniel K. Nakano
    Mathematische Zeitschrift, 2016, 282 : 1 - 24
  • [23] TORSION FREE ENDOTRIVIAL MODULES FOR FINITE GROUPS OF LIE TYPE
    Carlson, Jon F.
    Grodal, Jesper
    Mazza, Nadia
    Nakano, Daniel K.
    PACIFIC JOURNAL OF MATHEMATICS, 2022, 317 (02) : 239 - 274
  • [24] Simple modules of exceptional groups with normal closures of maximal torus orbits
    Bogdanov, I. I.
    Kuyumzhiyan, K. G.
    MATHEMATICAL NOTES, 2012, 92 (3-4) : 445 - 457
  • [25] Simple modules of exceptional groups with normal closures of maximal torus orbits
    I. I. Bogdanov
    K. G. Kuyumzhiyan
    Mathematical Notes, 2012, 92 : 445 - 457
  • [26] On the Grassmann modules for the unitary groups
    de Bruyn, Bart
    LINEAR & MULTILINEAR ALGEBRA, 2010, 58 (07): : 887 - 902
  • [27] Constructing endotrivial modules
    Carlson, JF
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2006, 206 (1-2) : 83 - 110
  • [28] Endotrivial modules in the cyclic case
    Mazza, Nadia
    Thevenaz, Jacques
    ARCHIV DER MATHEMATIK, 2007, 89 (06) : 497 - 503
  • [29] Endotrivial modules in the cyclic case
    Nadia Mazza
    Jacques Thévenaz
    Archiv der Mathematik, 2007, 89 : 497 - 503
  • [30] Varieties of subalgebras and endotrivial modules
    Chang, Hao
    Farnsteiner, Rolf
    JOURNAL OF ALGEBRA, 2023, 631 : 877 - 895