Piecewise-regular maps

被引:0
|
作者
Wojciech Kucharz
机构
[1] Jagiellonian University,Faculty of Mathematics and Computer Science, Institute of Mathematics
来源
Mathematische Annalen | 2018年 / 372卷
关键词
14P05; 14P99; 57R22;
D O I
暂无
中图分类号
学科分类号
摘要
Let V, W be real algebraic varieties (that is, up to isomorphism, real algebraic sets), and X⊆V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X \subseteq V$$\end{document} some subset. A map from X into W is said to be regular if it can be extended to a regular map defined on some Zariski locally closed subvariety of V that contains X. Furthermore, a continuous map f:X→W\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f :X \rightarrow W$$\end{document} is said to be piecewise-regular if there exists a stratification S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathscr {S}$$\end{document} of V such that for every stratum S∈S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S \in \mathscr {S}$$\end{document} the restriction of f to each connected component of X∩S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X \cap S$$\end{document} is a regular map. By a stratification of V we mean a finite collection of pairwise disjoint Zariski locally closed subvarieties whose union is equal to V. Assuming that the subset X of V is compact, we prove that every continuous map from X into a Grassmann variety or a unit sphere can be approximated by piecewise-regular maps. As an application, we obtain a variant of the algebraization theorem for topological vector bundles. If the variety V is compact and nonsingular, we prove that each continuous map from V into a unit sphere is homotopic to a piecewise-regular map of class Ck\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathscr {C}^k$$\end{document}, where k is an arbitrary nonnegative integer.
引用
收藏
页码:1545 / 1574
页数:29
相关论文
共 50 条