q-Classical Orthogonal Polynomials: A General Difference Calculus Approach

被引:0
|
作者
R. S. Costas-Santos
F. Marcellán
机构
[1] University of California,Department of Mathematics
[2] Universidad Carlos III de Madrid,Departamento de Matemáticas
来源
关键词
Classical orthogonal polynomials; Discrete orthogonal polynomials; -Polynomials; Characterization theorems; Rodrigues operator; 33C45; 33D45;
D O I
暂无
中图分类号
学科分类号
摘要
It is well known that the classical families of orthogonal polynomials are characterized as the polynomial eigenfunctions of a second order homogeneous linear differential/difference hypergeometric operator with polynomial coefficients.
引用
收藏
页码:107 / 128
页数:21
相关论文
共 50 条
  • [31] Characterization of q-Dunkl-classical symmetric orthogonal q-polynomials
    Aloui, Baghdadi
    Souissi, Jihad
    RAMANUJAN JOURNAL, 2022, 57 (04): : 1355 - 1365
  • [32] Difference equations and quantized discriminants for q-orthogonal polynomials
    Ismail, MEH
    ADVANCES IN APPLIED MATHEMATICS, 2003, 30 (03) : 562 - 589
  • [34] CLASSICAL ORTHOGONAL POLYNOMIALS
    ANDREWS, GE
    ASKEY, R
    LECTURE NOTES IN MATHEMATICS, 1985, 1171 : 36 - 62
  • [35] ON CLASSICAL ORTHOGONAL POLYNOMIALS
    ATAKISHIYEV, NM
    RAHMAN, M
    SUSLOV, SK
    CONSTRUCTIVE APPROXIMATION, 1995, 11 (02) : 181 - 226
  • [36] The semiclassical Sobolev orthogonal polynomials A general approach
    Costas-Santos, R. S.
    Moreno-Balcazar, J. J.
    JOURNAL OF APPROXIMATION THEORY, 2011, 163 (01) : 65 - 83
  • [37] On Saigo Fractional q-Calculus of a General Class of q-Polynomials
    Shimelis, Biniyam
    Suthar, Daya Lal
    SAHAND COMMUNICATIONS IN MATHEMATICAL ANALYSIS, 2024, 21 (02): : 147 - 166
  • [38] Classical orthogonal polynomials in two variables: a matrix approach
    Lidia Fernández
    Teresa E. Pérez
    Miguel A. Piñar
    Numerical Algorithms, 2005, 39 : 131 - 142
  • [39] Classical orthogonal polynomials in two variables:: a matrix approach
    Fernández, L
    Pérez, TE
    Piñar, MA
    NUMERICAL ALGORITHMS, 2005, 39 (1-3) : 131 - 142
  • [40] Markov type inequalities for difference operators and discrete classical orthogonal polynomials
    Jung, IH
    Kwon, KH
    Lee, DW
    ADVANCES IN DIFFERENCE EQUATIONS-BOOK, 1997, : 335 - 342