Multi-label classification via learning a unified object-label graph with sparse representation

被引:0
|
作者
Lina Yao
Quan Z. Sheng
Anne H. H. Ngu
Byron J. Gao
Xue Li
Sen Wang
机构
[1] The University of Adelaide,School of Computer Science
[2] Texas State University,Department of Computer Science
[3] The University of Queensland,School of Information Technology and Electrical Engineering
来源
World Wide Web | 2016年 / 19卷
关键词
Classification; Multi-label classification; Sparse reconstruction; Random walk with restart;
D O I
暂无
中图分类号
学科分类号
摘要
Automatic annotation is an essential technique for effectively handling and organizing Web objects (e.g., Web pages), which have experienced an unprecedented growth over the last few years. Automatic annotation is usually formulated as a multi-label classification problem. Unfortunately, labeled data are often time-consuming and expensive to obtain. Web data also accommodate much richer feature space. This calls for new semi-supervised approaches that are less demanding on labeled data to be effective in classification. In this paper, we propose a graph-based semi-supervised learning approach that leverages random walks and ℓ1 sparse reconstruction on a mixed object-label graph with both attribute and structure information for effective multi-label classification. The mixed graph contains an object-affinity subgraph, a label-correlation subgraph, and object-label edges with adaptive weight assignments indicating the assignment relationships. The object-affinity subgraph is constructed using ℓ1 sparse graph reconstruction with extracted structural meta-text, while the label-correlation subgraph captures pairwise correlations among labels via linear combination of their co-occurrence similarity and kernel-based similarity. A random walk with adaptive weight assignment is then performed on the constructed mixed graph to infer probabilistic assignment relationships between labels and objects. Extensive experiments on real Yahoo! Web datasets demonstrate the effectiveness of our approach.
引用
收藏
页码:1125 / 1149
页数:24
相关论文
共 50 条
  • [41] Label-Specific Document Representation for Multi-Label Text Classification
    Xiao, Lin
    Huang, Xin
    Chen, Boli
    Jing, Liping
    2019 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING AND THE 9TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (EMNLP-IJCNLP 2019): PROCEEDINGS OF THE CONFERENCE, 2019, : 466 - 475
  • [42] Learning label-specific features via neural network for multi-label classification
    Ling Jia
    Dong Sun
    Yu Shi
    Yi Tan
    Qingwei Gao
    Yixiang Lu
    International Journal of Machine Learning and Cybernetics, 2023, 14 : 1161 - 1177
  • [43] Image emotion multi-label classification based on multi-graph learning
    Wang, Meixia
    Zhao, Yuhai
    Wang, Yejiang
    Xu, Tongze
    Sun, Yiming
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 231
  • [44] Multi-label relational classification via node and label correlation
    Zhang, Zan
    Wang, Hao
    Liu, Lin
    Li, Jiuyong
    NEUROCOMPUTING, 2018, 292 : 72 - 81
  • [45] Label Embedding for Multi-label Classification Via Dependence Maximization
    Li, Yachong
    Yang, Youlong
    NEURAL PROCESSING LETTERS, 2020, 52 (02) : 1651 - 1674
  • [46] Multi-label Classification via Label-Topic Pairs
    Chen, Gang
    Peng, Yue
    Wang, Chongjun
    WEB AND BIG DATA (APWEB-WAIM 2018), PT I, 2018, 10987 : 32 - 44
  • [47] Label Embedding for Multi-label Classification Via Dependence Maximization
    Yachong Li
    Youlong Yang
    Neural Processing Letters, 2020, 52 : 1651 - 1674
  • [48] Sparse multi-label feature selection via dynamic graph manifold regularization
    Yao Zhang
    Yingcang Ma
    International Journal of Machine Learning and Cybernetics, 2023, 14 : 1021 - 1036
  • [49] Sparse multi-label feature selection via dynamic graph manifold regularization
    Zhang, Yao
    Ma, Yingcang
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2023, 14 (03) : 1021 - 1036
  • [50] Graph-Constrained Supervised Dictionary Learning for Multi-Label Classification
    Yankelevsky, Yael
    Elad, Michael
    2016 IEEE INTERNATIONAL CONFERENCE ON THE SCIENCE OF ELECTRICAL ENGINEERING (ICSEE), 2016,