Multi-label classification via learning a unified object-label graph with sparse representation

被引:0
|
作者
Lina Yao
Quan Z. Sheng
Anne H. H. Ngu
Byron J. Gao
Xue Li
Sen Wang
机构
[1] The University of Adelaide,School of Computer Science
[2] Texas State University,Department of Computer Science
[3] The University of Queensland,School of Information Technology and Electrical Engineering
来源
World Wide Web | 2016年 / 19卷
关键词
Classification; Multi-label classification; Sparse reconstruction; Random walk with restart;
D O I
暂无
中图分类号
学科分类号
摘要
Automatic annotation is an essential technique for effectively handling and organizing Web objects (e.g., Web pages), which have experienced an unprecedented growth over the last few years. Automatic annotation is usually formulated as a multi-label classification problem. Unfortunately, labeled data are often time-consuming and expensive to obtain. Web data also accommodate much richer feature space. This calls for new semi-supervised approaches that are less demanding on labeled data to be effective in classification. In this paper, we propose a graph-based semi-supervised learning approach that leverages random walks and ℓ1 sparse reconstruction on a mixed object-label graph with both attribute and structure information for effective multi-label classification. The mixed graph contains an object-affinity subgraph, a label-correlation subgraph, and object-label edges with adaptive weight assignments indicating the assignment relationships. The object-affinity subgraph is constructed using ℓ1 sparse graph reconstruction with extracted structural meta-text, while the label-correlation subgraph captures pairwise correlations among labels via linear combination of their co-occurrence similarity and kernel-based similarity. A random walk with adaptive weight assignment is then performed on the constructed mixed graph to infer probabilistic assignment relationships between labels and objects. Extensive experiments on real Yahoo! Web datasets demonstrate the effectiveness of our approach.
引用
收藏
页码:1125 / 1149
页数:24
相关论文
共 50 条
  • [1] Multi-label classification via learning a unified object-label graph with sparse representation
    Yao, Lina
    Sheng, Quan Z.
    Ngu, Anne H. H.
    Gao, Byron J.
    Li, Xue
    Wang, Sen
    WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS, 2016, 19 (06): : 1125 - 1149
  • [2] Label-aware graph representation learning for multi-label image classification
    Chen, Yilu
    Zou, Changzhong
    Chen, Jianli
    NEUROCOMPUTING, 2022, 492 : 50 - 61
  • [3] Multi-Label Transfer Learning With Sparse Representation
    Han, Yahong
    Wu, Fei
    Zhuang, Yueting
    He, Xiaofei
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2010, 20 (08) : 1110 - 1121
  • [4] Supervised representation learning for multi-label classification
    Ming Huang
    Fuzhen Zhuang
    Xiao Zhang
    Xiang Ao
    Zhengyu Niu
    Min-Ling Zhang
    Qing He
    Machine Learning, 2019, 108 : 747 - 763
  • [5] Supervised representation learning for multi-label classification
    Huang, Ming
    Zhuang, Fuzhen
    Zhang, Xiao
    Ao, Xiang
    Niu, Zhengyu
    Zhang, Min-Ling
    He, Qing
    MACHINE LEARNING, 2019, 108 (05) : 747 - 763
  • [6] Multi-Label Classification with Label Graph Superimposing
    Wang, Ya
    He, Dongliang
    Li, Fu
    Long, Xiang
    Zhou, Zhichao
    Ma, Jinwen
    Wen, Shilei
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 12265 - 12272
  • [7] Self-Paced Unified Representation Learning for Hierarchical Multi-Label Classification
    Yuan, Zixuan
    Liu, Hao
    Zhou, Haoyi
    Zhang, Denghui
    Zhang, Xiao
    Wang, Hao
    Xiong, Hui
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 15, 2024, : 16623 - 16632
  • [8] Multi-Label Graph Convolutional Network Representation Learning
    Shi, Min
    Tang, Yufei
    Zhu, Xingquan
    Liu, Jianxun
    IEEE TRANSACTIONS ON BIG DATA, 2022, 8 (05) : 1169 - 1181
  • [9] Sparse multi-label feature selection via pseudo-label learning and dynamic graph constraints
    Zhang, Yao
    Tang, Jun
    Cao, Ziqiang
    Chen, Han
    INFORMATION FUSION, 2025, 118
  • [10] Sparse and low-rank representation for multi-label classification
    He, Zhi-Fen
    Yang, Ming
    APPLIED INTELLIGENCE, 2019, 49 (05) : 1708 - 1723