Predictors for extubation failure in COVID-19 patients using a machine learning approach

被引:0
|
作者
Lucas M. Fleuren
Tariq A. Dam
Michele Tonutti
Daan P. de Bruin
Robbert C. A. Lalisang
Diederik Gommers
Olaf L. Cremer
Rob J. Bosman
Sander Rigter
Evert-Jan Wils
Tim Frenzel
Dave A. Dongelmans
Remko de Jong
Marco Peters
Marlijn J. A. Kamps
Dharmanand Ramnarain
Ralph Nowitzky
Fleur G. C. A. Nooteboom
Wouter de Ruijter
Louise C. Urlings-Strop
Ellen G. M. Smit
D. Jannet Mehagnoul-Schipper
Tom Dormans
Cornelis P. C. de Jager
Stefaan H. A. Hendriks
Sefanja Achterberg
Evelien Oostdijk
Auke C. Reidinga
Barbara Festen-Spanjer
Gert B. Brunnekreef
Alexander D. Cornet
Walter van den Tempel
Age D. Boelens
Peter Koetsier
Judith Lens
Harald J. Faber
A. Karakus
Robert Entjes
Paul de Jong
Thijs C. D. Rettig
Sesmu Arbous
Sebastiaan J. J. Vonk
Mattia Fornasa
Tomas Machado
Taco Houwert
Hidde Hovenkamp
Roberto Noorduijn Londono
Davide Quintarelli
Martijn G. Scholtemeijer
Aletta A. de Beer
机构
[1] Vrije Universiteit,Department of Intensive Care Medicine, Laboratory for Critical Care Computational Intelligence, Amsterdam Medical Data Science, Amsterdam UMC
[2] Erasmus Medical Center,Department of Intensive Care
[3] UMC Utrecht,Department of Intensive Care
[4] ICU,Department of Anesthesiology and Intensive Care
[5] OLVG,Department of Intensive Care
[6] St. Antonius Hospital,Department of Intensive Care Medicine
[7] Franciscus Gasthuis and Vlietland,Department of Intensive Care Medicine
[8] Radboud University Medical Center,Intensive Care
[9] Amsterdam UMC,Intensive Care
[10] Bovenij Ziekenhuis,Intensive Care
[11] Canisius Wilhelmina Ziekenhuis,Department of Intensive Care
[12] Catharina Ziekenhuis Eindhoven,Intensive Care
[13] ETZ Tilburg,Intensive Care
[14] HagaZiekenhuis,Department of Intensive Care Medicine
[15] Laurentius Ziekenhuis,Intensive Care
[16] Northwest Clinics,Intensive Care
[17] Reinier de Graaf Gasthuis,Intensive Care
[18] Spaarne Gasthuis,Intensive Care
[19] VieCuri Medisch Centrum,Department of Intensive Care
[20] Zuyderland MC,Intensive Care
[21] Jeroen Bosch Ziekenhuis,ICU
[22] Albert Schweitzerziekenhuis,ICU
[23] Haaglanden Medisch Centrum,ICU, SEH, BWC
[24] Maasstad Ziekenhuis Rotterdam,Intensive Care
[25] Martiniziekenhuis,Department of Intensive Care
[26] Ziekenhuis Gelderse Vallei,Department of Intensive Care
[27] Ziekenhuisgroep Twente,Department of Intensive Care
[28] Medisch Spectrum Twente,Intensive Care
[29] Ikazia Ziekenhuis Rotterdam,Department of Intensive Care
[30] Antonius Ziekenhuis Sneek,Department of Anesthesia and Intensive Care
[31] Medisch Centrum Leeuwarden,Department of Anesthesiology, Intensive Care and Pain Medicine
[32] ICU,Department of Intensive Care
[33] IJsselland Ziekenhuis,Department of Neurology
[34] ICU,Quantitative Data Analytics Group, Department of Computer Science, Faculty of Science
[35] WZA,Business Intelligence
[36] Diakonessenhuis Hospital,Department of Intensive Care Medicine, Amsterdam UMC
[37] Department of Intensive Care,Department of Intensive Care
[38] Slingeland Ziekenhuis,Department of Anesthesiology, Pain Management and Intensive Care
[39] Amphia Ziekenhuis,Department of ICMT
[40] LUMC,Department of Intensive Care Medicine
[41] BigData Republic,Department of Internal Medicine and Intensive Care
[42] Amsterdam UMC,Department of Clinical Epidemiology
[43] Universiteit Van Amsterdam,Department of Pulmonology
[44] Vrije Universiteit,Department of Intensive Care
[45] Haaglanden MC,ICU
[46] Universiteit Van Amsterdam,Department of Information Technology
[47] BovenIJ Ziekenhuis,Department of Pulmonology
[48] Catharina Ziekenhuis Eindhoven,Department of Intensive Care Medicine
[49] Haga Ziekenhuis,Intensive Care
[50] Radboud University Medical Centre,MUMC+
来源
Critical Care | / 25卷
关键词
Extubation; Prediction; Risk factors; Extubation failure;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [31] Rapid Thrombogenesis Prediction in Covid-19 Patients Using Machine Learning
    Lee, Joong-Lyul
    Alwajidi, Safaa
    Tree, Mike
    Cristobal, Angelo
    Zhao, Haitao
    ARTIFICIAL INTELLIGENCE APPLICATIONS AND INNOVATIONS, AIAI 2023, PT II, 2023, 676 : 373 - 384
  • [32] Survival Analysis of COVID-19 Patients in Russia Using Machine Learning
    Metsker, Oleg
    Kopanitsa, Georgy
    Yakovlev, Alexey
    Veronika, Karlina
    Zvartau, Nadezhda
    PHEALTH 2020: PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON WEARABLE MICRO AND NANO TECHNOLOGIES FOR PERSONALIZED HEALTH, 2020, 273 : 223 - 227
  • [33] Machine Learning Approach for COVID-19 Detection on Twitter
    Amin, Samina
    Uddin, M. Irfan
    Al-Baity, Heyam H.
    Zeb, M. Ali
    Khan, M. Abrar
    CMC-COMPUTERS MATERIALS & CONTINUA, 2021, 68 (02): : 2231 - 2247
  • [34] Covid-19 Projections: A Simple Machine Learning Approach
    Ortigoza, Gerardo
    Zapata, Uriel
    2021 IEEE INTERNATIONAL CONFERENCE ON ENGINEERING VERACRUZ (IEEE ICEV 2021(R)), 2021,
  • [35] A Machine Learning Approach to Predict the Rehabilitation Outcome in Convalescent COVID-19 Patients
    Adamo, Sarah
    Ambrosino, Pasquale
    Ricciardi, Carlo
    Accardo, Mariasofia
    Mosella, Marco
    Cesarelli, Mario
    d'Addio, Giovanni
    Maniscalco, Mauro
    JOURNAL OF PERSONALIZED MEDICINE, 2022, 12 (03):
  • [36] Unsupervised machine learning clustering approach for hospitalized COVID-19 pneumonia patients
    Nalinthasnai, Nuttinan
    Thammasudjarit, Ratchainant
    Tassaneyasin, Tanapat
    Eksombatchai, Dararat
    Sungkanuparph, Somnuek
    Boonsarngsuk, Viboon
    Sutherasan, Yuda
    Junhasavasdikul, Detajin
    Theerawit, Pongdhep
    Petnak, Tananchai
    BMC PULMONARY MEDICINE, 2025, 25 (01):
  • [37] Speech signal analysis of COVID-19 patients via machine learning approach
    Milani, M. G. Manisha
    Ramashini, Murugaiya
    Krishani, Murugiah
    2021 INTERNATIONAL CONFERENCE ON DECISION AID SCIENCES AND APPLICATION (DASA), 2021,
  • [38] Predicting Clinical Outcomes in COVID-19 and Pneumonia Patients: A Machine Learning Approach
    Cai, Kaida
    Wang, Zhengyan
    Yang, Xiaofang
    Fu, Wenzhi
    Zhao, Xin
    VIRUSES-BASEL, 2024, 16 (10):
  • [39] An approach to forecast impact of Covid-19 using supervised machine learning model
    Mohan, Senthilkumar
    John, A.
    Abugabah, Ahed
    Adimoolam, M.
    Kumar Singh, Shubham
    Kashif Bashir, Ali
    Sanzogni, Louis
    SOFTWARE-PRACTICE & EXPERIENCE, 2022, 52 (04): : 824 - 840
  • [40] COVID-19 Detection Using Contemporary Biosensors and Machine Learning Approach: A Review
    Agarwal, Sajal
    Srivastava, Rupam
    Kumar, Santosh
    Prajapati, Yogendra Kumar
    IEEE TRANSACTIONS ON NANOBIOSCIENCE, 2024, 23 (02) : 291 - 299