Spot estimation for fractional Ornstein–Uhlenbeck stochastic volatility model: consistency and central limit theorem

被引:0
|
作者
Yaroslav Eumenius-Schulz
机构
[1] LPSM-UPMC,
关键词
Rough volatility; Fractional stochastic volatility; Spot volatility estimator; Central limit theorem; 60; 62;
D O I
暂无
中图分类号
学科分类号
摘要
There has been an increasing interest for rough stochastic volatility models. However, little is known about the statistical inference for such models, especially for high frequency data. This paper investigates estimation of the fractional spot volatility from discrete observations of the price process on a grid with a time interval Δn→0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _n\rightarrow 0$$\end{document} as n→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\rightarrow \infty $$\end{document}. Namely, the model with fractional Ornstein–Uhlenbeck log-volatility and Itô-semimartingale log-price processes is considered. In this setup both consistency and central limit theorem are proven for truncated and non-truncated spot volatility estimators. Then, asymptotic confidence intervals are derived for a finite number of spot volatility estimators at different estimation times. Consequently, the highest possible rate of convergence achieved in the central limit theorem ΔnH/(2H+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _n^{H/(2H+1)}$$\end{document} is a function of the Hurst parameter H of the fractional Brownian motion driving the volatility. This rate coincides with the already known highest convergence rate for the Brownian case when H=0.5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H=0.5$$\end{document}. Furthermore, simulations in this paper validate the consistency and central limit theorem numerically. Article class.
引用
收藏
页码:355 / 380
页数:25
相关论文
共 50 条
  • [41] Estimation of all parameters in the fractional Ornstein-Uhlenbeck model under discrete observations
    Haress, El Mehdi
    Hu, Yaozhong
    STATISTICAL INFERENCE FOR STOCHASTIC PROCESSES, 2021, 24 (02) : 327 - 351
  • [42] Pricing variance swaps under stochastic volatility with an Ornstein-Uhlenbeck process
    Zhaoli Jia
    Xiuchun Bi
    Shuguang Zhang
    Journal of Systems Science and Complexity, 2015, 28 : 1412 - 1425
  • [43] An Ornstein-Uhlenbeck Model with the Stochastic Volatility Process and Tempered Stable Process for VIX Option Pricing
    Yan, Yutong
    Zhang, Wei
    Yin, Yahua
    Huo, Weidong
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2022, 2022
  • [44] Parameter estimation of Ornstein–Uhlenbeck process generating a stochastic graph
    Gobet E.
    Matulewicz G.
    Statistical Inference for Stochastic Processes, 2017, 20 (2) : 211 - 235
  • [45] Fractional Ornstein-Uhlenbeck Process with Stochastic Forcing, and its Applications
    Ascione, Giacomo
    Mishura, Yuliya
    Pirozzi, Enrica
    METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2021, 23 (01) : 53 - 84
  • [46] Inference with non-Gaussian Ornstein-Uhlenbeck processes for stochastic volatility
    Griffin, J. E.
    Steel, M. F. J.
    JOURNAL OF ECONOMETRICS, 2006, 134 (02) : 605 - 644
  • [47] Fractional Ornstein-Uhlenbeck Process with Stochastic Forcing, and its Applications
    Giacomo Ascione
    Yuliya Mishura
    Enrica Pirozzi
    Methodology and Computing in Applied Probability, 2021, 23 : 53 - 84
  • [48] Parameter Estimation of Complex Fractional Ornstein-Uhlenbeck Processes with Fractional Noise
    Chen, Yong
    Hu, Yaozhong
    Wang, Zhi
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2017, 14 (01): : 613 - 629
  • [49] ALMOST SURE CENTRAL LIMIT THEOREMS FOR RANDOM RATIOS AND APPLICATIONS TO LSE FOR FRACTIONAL ORNSTEIN-UHLENBECK PROCESSES
    Cenac, Peggy
    Es-Sebaiy, Khalifa
    PROBABILITY AND MATHEMATICAL STATISTICS-POLAND, 2015, 35 (02): : 285 - 300
  • [50] Stable central limit theorems for super Ornstein-Uhlenbeck processes
    Ren, Yan-Xia
    Song, Renming
    Sun, Zhenyao
    Zhao, Jianjie
    ELECTRONIC JOURNAL OF PROBABILITY, 2019, 24