Two-transitive ovals in generalized twisted field planes

被引:0
|
作者
M. Biliotti
V. Jha
N. L. Johnson
机构
[1] Dipartimento di Matematica,
[2] Università di Lecce,undefined
[3] Via Arnesano,undefined
[4] 73100 Lecce,undefined
[5] Italy,undefined
[6] ¶ e-mail: biliotti@ilenic.unile.it,undefined
[7] Mathematics Department,undefined
[8] Caledonian University,undefined
[9] Cowcaddens Road,undefined
[10] Glasgow,undefined
[11] Scotland,undefined
[12] ¶ e-mail: vjha@gcal.ac.uk,undefined
[13] Mathematics Department,undefined
[14] University of Iowa,undefined
[15] Iowa City,undefined
[16] Iowa 52242,undefined
[17] USA¶ e-mail: njohnson@math.uiowa.edu,undefined
来源
Archiv der Mathematik | 2002年 / 79卷
关键词
Collineation Group; Field Plane; Twisted Field; Affine Point; Twisted Field Plane;
D O I
暂无
中图分类号
学科分类号
摘要
It is shown that if a generalized twisted field plane \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ \pi $\end{document} of even order contains a parabolic oval which is invariant under a collineation group acting two-transitively on its affine points then \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ \pi $\end{document} is Desarguesian.
引用
收藏
页码:232 / 240
页数:8
相关论文
共 50 条