Two-transitive ovals in generalized twisted field planes

被引:0
|
作者
M. Biliotti
V. Jha
N. L. Johnson
机构
[1] Dipartimento di Matematica,
[2] Università di Lecce,undefined
[3] Via Arnesano,undefined
[4] 73100 Lecce,undefined
[5] Italy,undefined
[6] ¶ e-mail: biliotti@ilenic.unile.it,undefined
[7] Mathematics Department,undefined
[8] Caledonian University,undefined
[9] Cowcaddens Road,undefined
[10] Glasgow,undefined
[11] Scotland,undefined
[12] ¶ e-mail: vjha@gcal.ac.uk,undefined
[13] Mathematics Department,undefined
[14] University of Iowa,undefined
[15] Iowa City,undefined
[16] Iowa 52242,undefined
[17] USA¶ e-mail: njohnson@math.uiowa.edu,undefined
来源
Archiv der Mathematik | 2002年 / 79卷
关键词
Collineation Group; Field Plane; Twisted Field; Affine Point; Twisted Field Plane;
D O I
暂无
中图分类号
学科分类号
摘要
It is shown that if a generalized twisted field plane \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ \pi $\end{document} of even order contains a parabolic oval which is invariant under a collineation group acting two-transitively on its affine points then \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $ \pi $\end{document} is Desarguesian.
引用
收藏
页码:232 / 240
页数:8
相关论文
共 50 条
  • [1] Two-transitive ovals in generalized twisted field planes
    Biliotti, M
    Jha, V
    Johnson, NL
    ARCHIV DER MATHEMATIK, 2002, 79 (03) : 232 - 240
  • [2] Two-transitive ovals
    Maschietti, A
    ADVANCES IN GEOMETRY, 2006, 6 (02) : 323 - 332
  • [3] On two-transitive parabolic ovals
    Bonisoli, A
    Rinaldi, G
    DISCRETE MATHEMATICS, 2005, 294 (1-2) : 13 - 19
  • [4] Two-transitive parabolic ovals
    Biliotti M.
    Jha V.
    Johnson N.L.
    Journal of Geometry, 2001, 70 (1) : 17 - 27
  • [5] Transitive autotopism groups and the generalized twisted field planes
    Cordero, M
    Figueroa, RF
    MOSTLY FINITE GEOMETRIES: IN CELEBRATION OF T G OSTROM'S 80TH BIRTHDAY, 1997, 190 : 191 - 196
  • [6] Two-transitive orbits in finite projective planes
    Biliotti, Mauro
    Francot, Eliana
    JOURNAL OF GEOMETRY, 2005, 82 (1-2) : 1 - 24
  • [7] On a theorem of Hering and two-transitive ovals with a fixed external line
    Bonisoli, A
    MOSTLY FINITE GEOMETRIES: IN CELEBRATION OF T G OSTROM'S 80TH BIRTHDAY, 1997, 190 : 169 - 183
  • [8] Ovals and unitals in commutative twisted field planes
    Abatangelo, V
    Enea, MR
    Korchmáros, G
    Larato, B
    DISCRETE MATHEMATICS, 1999, 208 : 3 - 8
  • [9] Ovals and unitals in commutative twisted field planes
    Abatangelo, V.
    Enea, M.R.
    Korchmaros, G.
    Larato, B.
    Discrete Mathematics, 1999, 208-209 : 3 - 8
  • [10] On elation Laguerre planes with a two-transitive orbit on the set of generators
    Steinke, Gunter F.
    Stroppel, Markus J.
    FINITE FIELDS AND THEIR APPLICATIONS, 2018, 53 : 64 - 84