Stability of Kähler-Ricci Flow

被引:0
|
作者
Xiuxiong Chen
Haozhao Li
机构
[1] University of Wisconsin-Madison,Department of Mathematics
[2] East China Normal University,Department of Mathematics
来源
关键词
Kähler-Ricci flow; Kähler-Einstein metrics; Stability; 53C44; 32Q20;
D O I
暂无
中图分类号
学科分类号
摘要
We prove the convergence of Kähler-Ricci flow with some small initial curvature conditions. As applications, we discuss the convergence of Kähler-Ricci flow when the complex structure varies on a Kähler-Einstein manifold.
引用
收藏
页码:306 / 334
页数:28
相关论文
共 50 条
  • [31] ON SOME ROTATIONALLY SYMMETRIC GRADIENT PSEUDO-KHLER-RICCI SOLITONS
    段孝娟
    Acta Mathematica Scientia, 2018, (01) : 269 - 288
  • [32] A note on Kähler–Ricci flow
    Chengjie Yu
    Mathematische Zeitschrift, 2012, 272 : 191 - 201
  • [33] Cusp Kähler–Ricci flow on compact Kähler manifolds
    Jiawei Liu
    Xi Zhang
    Annali di Matematica Pura ed Applicata (1923 -), 2019, 198 : 289 - 306
  • [34] Longtime existence of Ka(sic)hler-Ricci flow and holomorphic sectional curvature
    Huang, Shaochuang
    Lee, Man-Chun
    Tam, Luen-Fai
    Tong, Freid
    COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2022, 30 (07) : 1479 - 1509
  • [35] A New Complete Two-Dimensional Shrinking Gradient Kähler-Ricci Soliton
    Bamler, Richard H.
    Cifarelli, Charles
    Conlon, Ronan J.
    Deruelle, Alix
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2024, 34 (02) : 377 - 392
  • [36] Perelman熵和Khler-Ricci流的稳定性
    田刚
    朱小华
    中国科学:数学, 2016, 46 (05) : 685 - 696
  • [37] Asymptotic stability for Kähler–Ricci solitons
    Ryosuke Takahashi
    Mathematische Zeitschrift, 2015, 281 : 1021 - 1034
  • [38] A New Complete Two-Dimensional Shrinking Gradient Kähler-Ricci Soliton
    Richard H. Bamler
    Charles Cifarelli
    Ronan J. Conlon
    Alix Deruelle
    Geometric and Functional Analysis, 2024, 34 : 377 - 392
  • [39] The Kähler–Ricci flow through singularities
    Jian Song
    Gang Tian
    Inventiones mathematicae, 2017, 207 : 519 - 595
  • [40] On the convergence of a modified Kähler–Ricci flow
    Yuan Yuan
    Mathematische Zeitschrift, 2011, 268 : 281 - 289