Central extensions of groups of sections

被引:0
|
作者
Karl-Hermann Neeb
Christoph Wockel
机构
[1] Technische Universität Darmstadt,Fachbereich Mathematik
[2] Georg-August-Universität Göttingen,Mathematisches Institut
来源
关键词
Gauge group; Gauge algebra; Central extension; Lie group extension; Integrable Lie algebra; Lie group bundle; Lie algebra bundle;
D O I
暂无
中图分类号
学科分类号
摘要
If K is a Lie group and q : P → M is a principal K-bundle over the compact manifold M, then any invariant symmetric V-valued bilinear form on the Lie algebra \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak{k}}$$\end{document} of K defines a Lie algebra extension of the gauge algebra by a space of bundle-valued 1-forms modulo exact 1-forms. In this article, we analyze the integrability of this extension to a Lie group extension for non-connected, possibly infinite-dimensional Lie groups K. If K has finitely many connected components, we give a complete characterization of the integrable extensions. Our results on gauge groups are obtained by the specialization of more general results on extensions of Lie groups of smooth sections of Lie group bundles. In this more general context, we provide sufficient conditions for integrability in terms of data related only to the group K.
引用
收藏
页码:381 / 418
页数:37
相关论文
共 50 条