Central extensions of groups of sections

被引:0
|
作者
Karl-Hermann Neeb
Christoph Wockel
机构
[1] Technische Universität Darmstadt,Fachbereich Mathematik
[2] Georg-August-Universität Göttingen,Mathematisches Institut
来源
关键词
Gauge group; Gauge algebra; Central extension; Lie group extension; Integrable Lie algebra; Lie group bundle; Lie algebra bundle;
D O I
暂无
中图分类号
学科分类号
摘要
If K is a Lie group and q : P → M is a principal K-bundle over the compact manifold M, then any invariant symmetric V-valued bilinear form on the Lie algebra \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak{k}}$$\end{document} of K defines a Lie algebra extension of the gauge algebra by a space of bundle-valued 1-forms modulo exact 1-forms. In this article, we analyze the integrability of this extension to a Lie group extension for non-connected, possibly infinite-dimensional Lie groups K. If K has finitely many connected components, we give a complete characterization of the integrable extensions. Our results on gauge groups are obtained by the specialization of more general results on extensions of Lie groups of smooth sections of Lie group bundles. In this more general context, we provide sufficient conditions for integrability in terms of data related only to the group K.
引用
收藏
页码:381 / 418
页数:37
相关论文
共 50 条
  • [1] Central extensions of groups of sections
    Neeb, Karl-Hermann
    Wockel, Christoph
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2009, 36 (04) : 381 - 418
  • [2] On central extensions of algebraic groups
    Altinel, T
    Cherlin, G
    JOURNAL OF SYMBOLIC LOGIC, 1999, 64 (01) : 68 - 74
  • [3] Central extensions of current groups
    Peter Maier
    Karl-Hermann Neeb
    Mathematische Annalen, 2003, 326 : 367 - 415
  • [4] CENTRAL EXTENSIONS OF GROUPS OF SYMPLECTOMORPHISMS
    Neretin, Yuri A.
    MOSCOW MATHEMATICAL JOURNAL, 2006, 6 (04) : 703 - 729
  • [5] HOMOLOGY AND CENTRAL EXTENSIONS OF GROUPS
    GANEA, T
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1968, 266 (11): : 556 - &
  • [6] Central extensions of current groups
    Maier, P
    Neeb, KH
    MATHEMATISCHE ANNALEN, 2003, 326 (02) : 367 - A3
  • [7] CENTRAL EXTENSIONS OF SPHERE GROUPS
    DOWKER, JS
    JOURNAL OF MATHEMATICAL PHYSICS, 1991, 32 (06) : 1433 - 1436
  • [8] Natural central extensions of groups
    Liedtke, Christian
    GROUPS GEOMETRY AND DYNAMICS, 2008, 2 (02) : 245 - 261
  • [9] CENTRAL EXTENSIONS OF PREORDERED GROUPS
    Gran, Marino
    Michel, Aline
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2023, 151 (04): : 659 - 686
  • [10] CENTRAL EXTENSIONS OF GROUPS OF LIE TYPE
    CURTIS, CW
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1965, 220 (3-4): : 174 - &