On joint universality of periodic Hurwitz zeta-functions

被引:0
|
作者
A. Laurinčikas
机构
[1] Vilnius University,
来源
关键词
Limit theorem; periodic Hurwitz zeta-function; probability measure; support of a measure; universality; weak convergence;
D O I
暂无
中图分类号
学科分类号
摘要
We prove a joint universality theorem for a collection of periodic Hurwitz zeta-functions with algebraically independent parameters over the field of rational numbers.
引用
收藏
页码:79 / 91
页数:12
相关论文
共 50 条
  • [41] Self-approximation of periodic Hurwitz zeta-functions
    Karikovas, Erikas
    NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2015, 20 (04): : 561 - 569
  • [42] Joint Universality of the Zeta-Functions of Cusp Forms
    Macaitiene, Renata
    MATHEMATICS, 2021, 9 (17)
  • [43] The mixed joint universality for a class of zeta-functions
    Kacinskaite, Roma
    Matsumoto, Kohji
    MATHEMATISCHE NACHRICHTEN, 2015, 288 (16) : 1900 - 1909
  • [44] A Mixed Joint Universality Theorem for Zeta-Functions
    Genys, J.
    Macaitiene, R.
    Rackauskiene, S.
    Siauciunas, D.
    MATHEMATICAL MODELLING AND ANALYSIS, 2010, 15 (04) : 431 - 446
  • [45] A Joint Limit Theorem for Epstein and Hurwitz Zeta-Functions
    Gerges, Hany
    Laurincikas, Antanas
    Macaitiene, Renata
    MATHEMATICS, 2024, 12 (13)
  • [46] The Universality of Zeta-Functions
    A. Laurinčikas
    Acta Applicandae Mathematica, 2003, 78 : 251 - 271
  • [47] Joint Discrete Approximation of Analytic Functions by Hurwitz Zeta-Functions
    Balciunas, Aidas
    Garbaliauskiene, Virginija
    Luksiene, Violeta
    Macaitiene, Renata
    Rimkeviciene, Audrone
    MATHEMATICAL MODELLING AND ANALYSIS, 2022, 27 (01) : 88 - 100
  • [48] THE JOINT DISTRIBUTION OF PERIODIC ZETA-FUNCTIONS
    Kacinskaite, Roma
    Laurincikas, Antanas
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2011, 48 (02) : 257 - 279
  • [49] The universality of zeta-functions
    Laurincikas, A
    ACTA APPLICANDAE MATHEMATICAE, 2003, 78 (1-3) : 251 - 271
  • [50] ZEROS OF HURWITZ ZETA-FUNCTIONS
    SPIRA, R
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (02): : A296 - A296