Dual-branch feature learning network for single image super-resolution

被引:1
|
作者
Yu L. [1 ]
Deng Q. [1 ]
Liu B. [1 ]
Wu H. [1 ]
Hu H. [1 ]
机构
[1] College of Information and Communication Engineering, Harbin Engineering University, Harbin
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Convolutional neural network; Dual-branch feature learning; Image super-resolution;
D O I
10.1007/s11042-023-14742-1
中图分类号
学科分类号
摘要
The feature extraction ability of some existing super-resolution networks is relatively weak. And these networks do not further process the extracted features. These problems make the networks often show limited performance, resulting in blurred details and unclear edges of the reconstructed images. Therefore, further research is needed to resolve these problems. In this paper, we propose a novel dual-branch feature learning super resolution network (DBSR). The core of DBSR is the dual-branch feature learning (DB) block. In order to enhance the ability of feature extraction, the block adopts a multi-level and dual-branch structure. At the same time, some components for further processing features are introduced in each branch to maximize the learning ability of the block. The reconstructed images of DBSR are clearer than other networks in line and contour, and better results are obtained in peak signal-to-noise ratio (PSNR) and structural similarity (SSIM). For example, when the scaling factor is 2, the PSNR/SSIM on each test dataset is 38.25dB/0.9614, 34.11dB/0.9218, 32.35dB/0.9018, 32.94dB/0.9354 and 39.46dB/0.9783 respectively. The experimental results demonstrate that DBSR achieves better accuracy and visually pleasing than the current excellent methods. © 2023, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
引用
收藏
页码:43297 / 43314
页数:17
相关论文
共 50 条
  • [31] A Deep Dual-Branch Networks for Joint Blind Motion Deblurring and Super-Resolution
    Zhang, Xinyi
    Wang, Fei
    Dong, Hang
    Guo, Yu
    PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON VISION, IMAGE AND SIGNAL PROCESSING (ICVISP 2018), 2018,
  • [32] Multi-branch-feature fusion super-resolution network
    Li, Dong
    Yang, Silu
    Wang, Xiaoming
    Qin, Yu
    Zhang, Heng
    DIGITAL SIGNAL PROCESSING, 2024, 145
  • [33] Deep Super-Resolution Network for Single Image Super-Resolution with Realistic Degradations
    Umer, Rao Muhammad
    Foresti, Gian Luca
    Micheloni, Christian
    ICDSC 2019: 13TH INTERNATIONAL CONFERENCE ON DISTRIBUTED SMART CAMERAS, 2019,
  • [34] An efficient and lightweight image super-resolution with feature network
    Zang, Yongsheng
    Zhou, Dongming
    Wang, Changcheng
    Nie, Rencan
    Guo, Yanbu
    OPTIK, 2022, 255
  • [35] Residual Feature Aggregation Network for Image Super-Resolution
    Liu, Jie
    Zhang, Wenjie
    Tang, Yuting
    Tang, Jie
    Wu, Gangshan
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 2356 - 2365
  • [36] Feature Preserving and Enhancing Network for Image Super-Resolution
    Su, Minglan
    Li, Xinchi
    Xu, Jiaoyang
    Yang, Mingchuan
    Zhang, Chaoying
    IEEE ACCESS, 2023, 11 : 132867 - 132877
  • [37] Classification of hyperspectral image based on dual-branch feature interaction network
    Li, Chenming
    Wang, Xiangyi
    Chen, Zhonghao
    Gao, Hongmin
    Xu, Shufang
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2022, 43 (09) : 3258 - 3279
  • [38] Deep and adaptive feature extraction attention network for single image super-resolution
    Lin, Jianpu
    Liao, Lizhao
    Lin, Shanling
    Lin, Zhixian
    Guo, Tailiang
    JOURNAL OF THE SOCIETY FOR INFORMATION DISPLAY, 2024, 32 (01) : 23 - 33
  • [39] Multi-level Feature Fusion Network for Single Image Super-Resolution
    Zhang, Xinxia
    Zhang, Xiaoqin
    Zhao, Li
    Jiang, Runhua
    Huang, Pengcheng
    Xu, Jiawei
    2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2020, : 3361 - 3368
  • [40] Spatial-temporal feature refine network for single image super-resolution
    Qin, Jiayi
    Chen, Lihui
    Liu, Kai
    Jeon, Gwanggil
    Yang, Xiaomin
    APPLIED INTELLIGENCE, 2023, 53 (08) : 9668 - 9688