Paley Type Inequalities for Orthogonal Series with Vector-Valued Coefficients

被引:0
|
作者
J. Garcia-Cuerva
K. S. Kazarian
V. I. Kolyada
机构
[1] UNIVERSIDAD AUTÓNOMA,DEPARTAMENTO DE MATEMÁTICAS, C
[2] UNIVERSIDAD DE LA RIOJA,XV
来源
关键词
Banach Space; Lorentz Space; Orthonormal System; Interpolation Space; Trigonometric System;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate the extension to Banach-space-valued functions of the classical inequalities due to Paley for the Fourier coefficients with respect to a general orthonormal system Φ. This leads us to introduce the notions of Paley Φ-type and Φ-cotype for a Banach space and some related concepts. We study the relations between these notions of type and cotype and those previously defined. We also analyze how the interpolation spaces inherit these characteristics from the original spaces, and use them to obtain sharp coefficient estimates for functions taking values in Lorentz spaces.
引用
收藏
页码:151 / 183
页数:32
相关论文
共 50 条
  • [31] Fan's inequalities for vector-valued multifunctions
    Georgiev, PG
    Tanaka, T
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2000, 76 (09) : 153 - 157
  • [32] Extensions of the vector-valued Hausdorff–Young inequalities
    Oscar Dominguez
    Mark Veraar
    Mathematische Zeitschrift, 2021, 299 : 373 - 425
  • [33] VECTOR-VALUED INEQUALITIES FOR HANKEL-TRANSFORMS
    ROMERA, E
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1995, 51 : 299 - 308
  • [34] On concentration inequalities for vector-valued Lipschitz functions
    Katselis, Dimitrios
    Xie, Xiaotian
    Beck, Carolyn L.
    Srikant, R.
    STATISTICS & PROBABILITY LETTERS, 2021, 173
  • [35] THE DISTRIBUTION OF VECTOR-VALUED RADEMACHER SERIES
    DILWORTH, SJ
    MONTGOMERYSMITH, SJ
    ANNALS OF PROBABILITY, 1993, 21 (04): : 2046 - 2052
  • [36] Vector-valued general Dirichlet series
    Carando, Daniel
    Defant, Andreas
    Marceca, Felipe
    Schoolmann, Ingo
    STUDIA MATHEMATICA, 2021, 258 (03) : 269 - 316
  • [37] On the Growth of Vector-Valued Fourier Series
    Parcet, Javier
    Soria, Fernando
    Xu, Quanhua
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2013, 62 (06) : 1765 - 1784
  • [38] On vector-valued modular forms and their Fourier coefficients
    Knopp, M
    Mason, G
    ACTA ARITHMETICA, 2003, 110 (02) : 117 - 124
  • [39] ON THE FOURIER-COEFFICIENTS OF VECTOR-VALUED FUNCTIONS
    KONIG, H
    MATHEMATISCHE NACHRICHTEN, 1991, 152 : 215 - 227
  • [40] VECTOR-VALUED INEQUALITIES OF MARCINKIEWICZ-ZYGMUND AND GROTHENDIECK TYPE FOR TOEPLITZ FORMS
    COTLAR, M
    SADOSKY, C
    LECTURE NOTES IN MATHEMATICS, 1983, 992 : 278 - 308