Geometric Correction for Diffusive Expansion of Steady Neutron Transport Equation

被引:0
|
作者
Lei Wu
Yan Guo
机构
[1] Brown University,Division of Applied Mathematics
来源
关键词
Boundary Layer; Compatibility Condition; Interior Solution; Geometric Correction; Neutron Transport;
D O I
暂无
中图分类号
学科分类号
摘要
We revisit the diffusive limit of a steady neutron transport equation in a two-dimensional unit disk with one-speed velocity. A classical theorem by Bensoussan et al. (Publ Res Inst Math Sci 15(1):53–157, 1979) states that its solution can be approximated in L∞ by the leading order interior solution plus the Knudsen layer in the diffusive limit. In this paper, we construct a counterexample to this result via a different boundary layer expansion with geometric correction.
引用
收藏
页码:1473 / 1553
页数:80
相关论文
共 50 条
  • [22] A simple Boltzmann transport equation for ballistic to diffusive transient heat transport
    Maassen, Jesse
    Lundstrom, Mark
    JOURNAL OF APPLIED PHYSICS, 2015, 117 (13)
  • [23] Diffusive logistic equation with constant yield harvesting, I: Steady states
    Oruganti, S
    Shi, JP
    Shivaji, R
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 354 (09) : 3601 - 3619
  • [24] Existence and uniqueness of steady state solutions of a nonlocal diffusive logistic equation
    Linan Sun
    Junping Shi
    Yuwen Wang
    Zeitschrift für angewandte Mathematik und Physik, 2013, 64 : 1267 - 1278
  • [25] Existence and uniqueness of steady state solutions of a nonlocal diffusive logistic equation
    Sun, Linan
    Shi, Junping
    Wang, Yuwen
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2013, 64 (04): : 1267 - 1278
  • [26] SOLUTIONS OF STEADY, ONE-SPEED NEUTRON-TRANSPORT EQUATION FOR SMALL MEAN FREE PATHS
    LARSEN, EW
    JOURNAL OF MATHEMATICAL PHYSICS, 1974, 15 (03) : 299 - 305
  • [27] On the boundary conditions for the neutron transport equation
    P. Saracco
    N. Chentre
    S. Dulla
    P. Ravetto
    The European Physical Journal Plus, 135
  • [28] NUMERICAL SOLUTION OF NEUTRON TRANSPORT EQUATION
    BOWDEN, RL
    BULLARD, AG
    JOURNAL OF NUCLEAR ENERGY, 1969, 23 (11-1): : 655 - &
  • [29] QUANTUM CORRECTIONS TO NEUTRON TRANSPORT EQUATION
    DIANA, E
    SCOTTI, A
    PHYSICAL REVIEW, 1969, 177 (01): : 330 - +
  • [30] On the boundary conditions for the neutron transport equation
    Saracco, P.
    Chentre, N.
    Dulla, S.
    Ravetto, P.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2020, 135 (02):