A gradient reproducing kernel collocation method for high order differential equations

被引:0
|
作者
Ashkan Mahdavi
Sheng-Wei Chi
Huiqing Zhu
机构
[1] University of Illinois at Chicago,Department of Civil and Material Engineering
[2] University of Southern Mississippi,Department of Mathematics
来源
Computational Mechanics | 2019年 / 64卷
关键词
Strong form collocation; Weighted collocation method; Gradient reproducing kernel; Reproducing kernel collocation method;
D O I
暂无
中图分类号
学科分类号
摘要
The High order Gradient Reproducing Kernel in conjunction with the Collocation Method (HGRKCM) is introduced for solutions of 2nd- and 4th-order PDEs. All the derivative approximations appearing in PDEs are constructed using the gradient reproducing kernels. Consequently, the computational cost for construction of derivative approximations reduces tremendously, basis functions for derivative approximations are smooth, and the accumulated error arising from calculating derivative approximations are controlled in comparison to the direct derivative counterparts. Furthermore, it is theoretically estimated and numerically tested that the same number of collocation points as the source points can be used to obtain the optimal solution in the HGRKCM. Overall, the HGRKCM is roughly 10–25 times faster than the conventional reproducing kernel collocation method. The convergence of the present method is estimated using the least squares functional equivalence. Numerical results are verified and compared with other strong-form-based and Galerkin-based methods.
引用
收藏
页码:1421 / 1454
页数:33
相关论文
共 50 条