Inviscid Damping Near the Couette Flow in a Channel

被引:0
|
作者
Alexandru D. Ionescu
Hao Jia
机构
[1] Princeton University,
[2] University of Minnesota,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We prove asymptotic stability of the Couette flow for the 2D Euler equations in the domain T×[0,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {T}\times [0,1]$$\end{document}. More precisely we prove that if we start with a small and smooth perturbation (in a suitable Gevrey space) of the Couette flow, then the velocity field converges strongly to a nearby shear flow. Our solutions are defined on the compact set T×[0,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {T}\times [0,1]$$\end{document} (“the channel”) and therefore have finite energy. The vorticity perturbation, which is initially assumed to be supported in the interior of the channel, will remain supported in the interior of the channel at all times, will be driven to higher frequencies by the linear flow, and will converge weakly to another shear flow as t→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t\rightarrow \infty $$\end{document}.
引用
收藏
页码:2015 / 2096
页数:81
相关论文
共 50 条
  • [41] Space Quasi-Periodic Steady Euler Flows Close to the Inviscid Couette Flow
    Franzoi, Luca
    Masmoudi, Nader
    Montalto, Riccardo
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2024, 248 (05)
  • [42] Instability of a cantilevered flexible plate in inviscid channel flow
    Howell, Richard M.
    Lucey, Anthony D.
    Carpenter, Peter W.
    PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE VOL 9, 2007, : 769 - 776
  • [43] Recurrence in 2D inviscid channel flow
    Li, Y. Charles
    APPLIED MATHEMATICS LETTERS, 2012, 25 (12) : 2188 - 2192
  • [44] Linear Inviscid Damping for a Class of Monotone Shear Flow in Sobolev Spaces
    Wei, Dongyi
    Zhang, Zhifei
    Zhao, Weiren
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2018, 71 (04) : 617 - 687
  • [45] LINEARIZED NEAR-FREE MOLECULE COUETTE FLOW
    SU, CH
    PHYSICS OF FLUIDS, 1964, 7 (11) : 1867 - 1868
  • [46] A dynamical approach to the study of instability near Couette flow
    Li, Hui
    Masmoudi, Nader
    Zhao, Weiren
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2024, 77 (06) : 2863 - 2946
  • [47] The Boltzmann equation for plane Couette flow in a finite channel
    Ma, Xuan
    Wang, Yating
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2024, 77
  • [48] Unsteady Hydromagnetic Couette Flow within a Porous Channel
    Seth, G. S.
    Ansari, Md S.
    Nandkeolyar, R.
    JOURNAL OF APPLIED SCIENCE AND ENGINEERING, 2011, 14 (01): : 7 - 14
  • [49] Linear stability of the Couette flow of a vibrationally excited gas. 1. Inviscid problem
    Grigor'ev, Yu. N.
    Ershov, I. V.
    JOURNAL OF APPLIED MECHANICS AND TECHNICAL PHYSICS, 2014, 55 (02) : 258 - 269
  • [50] Linear stability of the Couette flow of a vibrationally excited gas. 1. Inviscid problem
    Yu. N. Grigor’ev
    I. V. Ershov
    Journal of Applied Mechanics and Technical Physics, 2014, 55 : 258 - 269