Infinite-Dimensional Carnot Groups and Gâteaux Differentiability

被引:0
|
作者
Enrico Le Donne
Sean Li
Terhi Moisala
机构
[1] Università di Pisa,Dipartimento di Matematica
[2] University of Connecticut,Department of Mathematics and Statistics
[3] University of Jyväskylä,undefined
来源
The Journal of Geometric Analysis | 2021年 / 31卷
关键词
Carnot groups; Differentiability; Rademacher; Gateaux derivative; 28A15; 53C17; 58C20; 46G05;
D O I
暂无
中图分类号
学科分类号
摘要
This paper contributes to the generalization of Rademacher’s differentiability result for Lipschitz functions when the domain is infinite dimensional and has nonabelian group structure. We introduce an infinite-dimensional analogue of Carnot groups that are metric groups equipped with dilations (which we call metric scalable groups) admitting a dense increasing sequence of finite-dimensional Carnot subgroups. For such groups, we show that every Lipschitz function has a point of Gâteaux differentiability. As a step in the proof, we show that a certain σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document}-ideal of sets that are null with respect to this sequence of subgroups cannot contain open sets. We also give a geometric criterion for when such Carnot subgroups exist in metric scalable groups and provide examples of such groups. The proof of the main theorem follows the work of Aronszajn (Stud Math 57(2):147–190, 1976) and Pansu (Ann Math 129(1):1–60, 1989).
引用
收藏
页码:1756 / 1785
页数:29
相关论文
共 50 条