A Fast Gradient Projection Method for a Constrained Fractional Optimal Control

被引:0
|
作者
Ning Du
Hong Wang
Wenbin Liu
机构
[1] Shandong Univeristy,School of Mathematics
[2] University of South Carolina,Department of Mathematics
[3] KBS,undefined
[4] University of Kent,undefined
来源
关键词
Constrained optimal control; Fractional diffusion equation; Fast Fourier transform; Preconditioned conjugate gradient method;
D O I
暂无
中图分类号
学科分类号
摘要
Optimal control problems governed by a fractional diffusion equation tends to provide a better description than one by a classical second-order Fickian diffusion equation in the context of transport or conduction processes in heterogeneous media. However, the fractional control problem introduces significantly increased computational complexity and storage requirement than the corresponding classical control problem, due to the nonlocal nature of fractional differential operators. We develop a fast gradient projection method for a pointwise constrained optimal control problem governed by a time-dependent space-fractional diffusion equation, which requires the computational cost from O(MN3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(M N^3)$$\end{document} of a conventional solver to O(MNlogN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(M N\log N)$$\end{document} and memory requirement from O(N2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(N^2)$$\end{document} to O(N) for a problem of size N and of M time steps. Numerical experiments show the utility of the method.
引用
收藏
页码:1 / 20
页数:19
相关论文
共 50 条
  • [41] A Projection Approach to Equality Constrained Iterative Linear Quadratic Optimal Control
    Giftthaler, Markus
    Buchli, Jonas
    2017 IEEE-RAS 17TH INTERNATIONAL CONFERENCE ON HUMANOID ROBOTICS (HUMANOIDS), 2017, : 61 - 66
  • [42] A Schwarz domain decomposition method with gradient projection for optimal control governed by elliptic partial differential equations
    Chang, Huibin
    Yang, Danping
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (17) : 5078 - 5094
  • [43] A multigrid method for constrained optimal control problems
    Engel, M.
    Griebel, M.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (15) : 4368 - 4388
  • [44] A fast projection gradient method for solving the dynamic traffic assignment problem
    Wu Z.
    Li M.
    Xu H.
    Xitong Gongcheng Lilun yu Shijian/System Engineering Theory and Practice, 2021, 41 (10): : 2696 - 2709
  • [45] Gradient Projection and Conditional Gradient Methods for Constrained Nonconvex Minimization
    Balashov, M. V.
    Polyak, B. T.
    Tremba, A. A.
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2020, 41 (07) : 822 - 849
  • [46] Gradient projection and conditional gradient methods for constrained nonconvex minimization
    Balashov, M.V.
    Polyak, B.T.
    Tremba, A.A.
    arXiv, 2019,
  • [47] Gradient Projection and Conditional Gradient Methods for Constrained Nonconvex Minimization
    Balashov, M.V.
    Polyak, B.T.
    Tremba, A.A.
    Tremba, A.A. (atremba@ipu.ru), 1600, Bellwether Publishing, Ltd. (41): : 822 - 849
  • [48] Spectral Galerkin method for state constrained optimal control of fractional advection-diffusion-reaction equations
    Wang, Fangyuan
    Zhou, Zhaojie
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2022, 38 (05) : 1526 - 1542
  • [49] An extension of the gradient projection method and Newton’s method to extremum problems constrained by a smooth surface
    Yu. A. Chernyaev
    Computational Mathematics and Mathematical Physics, 2015, 55 : 1451 - 1460
  • [50] Fractional Chebyshev pseudospectral method for fractional optimal control problems
    Habibli, M.
    Skandari, M. H. Noori
    OPTIMAL CONTROL APPLICATIONS & METHODS, 2019, 40 (03): : 558 - 572